

CogLab: Making Inferences WEEK 10

recap: Oct 31, 2023

- what we covered:
- manipulating data using tidyverse verbs
- your to-do's were:
- apply: formative assignment \#2 (R descriptive)
- send: experiment for piloting

today's agenda

- association data analysis
- statistical inferences

creating an association scoring sheet

- four possible cues were presented
- each cue has six possible valid responses
- each response can be congruent / incongruent for a given cue
- the type of association can be direct / shared / random for a given cue-response

read in scoring sheet

- new heading \# association
- read in the scoring sheet and view the dataframe
- what are congruent responses?
- what is a direct association?
- what is a random association?
\# association
- ${ }^{\text {\{ }\{r\}}$
scoring = read_csv("association_scoring.csv")\%>\% arrange(cue, response)

cue	response	congruence	type_of_association	cue_type
dodish	apple	incongruent	direct	adjective
dodish	dodish	repeat	random	adjective
dodish	foobly	incongruent	random	adjective
dodish	geck	congruent	direct	adjective
dodish	horse	congruent	direct	adjective
dodish	mipp	incongruent	direct	adjective
foobly	apple	congruent	direct	adjective
foobly	dodish	incongruent	random	adjective
foobly	foobly	repeat	random	adjective
foobly	geck	incongruent	direct	adjective

merging two dataframes

- we want to merge our association data with this scoring sheet
- first, filter for association trials

```
association_trials = savic %>%
    filter(typeoftrial == "association")
association_trials = savic %>%
    filter(typeoftrial == "association") %>%
    select(ID, revised_response, cue)
```

- select relevant columns
- compare association trials to scoring data
- to merge, we need at least one shared column between two dataframes
- potential problems?

- first-R-notebook.Rmd* \times		association_trials *		cue dodish	response	congruence	type_of_association	cue_type		
		apple	incongruent		direct	adjective				
						dodish	dodish	repeat	random	adjective
-	ID	revised_response	cue	dodish	foobly	incongruent	random	adjective		
1	5418680	Apple	foobly	dodish	geck	congruent	direct	adjective		
				dodish	horse	congruent	direct	adjective		
2	5418680	Apple	foobly	dodish	mipp	incongruent	direct	adjective		
3	5418680	Dodish	geck	foobly	apple	congruent	direct	adjective		
4	5418680	Dodish	geck	foobly	dodish	incongruent	random	adjective		
				foobly	foobly	repeat	random	adjective		
5	5418680	Dodish	geck	foobly	geck	incongruent	direct	adjective		

setting up for merging

- rename() the response column
- convert to lowercase

```
association_trials = savic %>%
    filter(typeoftrial == "association") %>%
    select(ID, revised_response, cue) %>%
    rename(response = "revised_response")%>%
    mutate(response = tolower(response))
```

- first-R-notebook.Rmd* \times		Rmd* \times associ	association_trials \times
\checkmark -	(2) $\nabla^{\text {Filte }}$		
-	ID	revised_response	cue
1	5418680	Apple	foobly
2	5418680	Apple	foobly
3	5418680	Dodish	geck
4	5418680	Dodish	geck
5	5418680	Dodish	geck

tidyverse: left_join()

- left_join() allows you to merge additional columns from a different dataframe to your dataframe, by matching on common column names and values
association_trials = savic \%>\%
filter(typeoftrial == "association") \%>\% select(ID, revised_response, cue) \%>\%
rename(response = "revised_response")\%>\%
mutate(response = tolower(response)) \%>\%
left_join(scoring)

ID	response	cue	congruence	type_of_association	cue_type
5418680	apple	foobly	congruent	direct	adjective
5418680	apple	foobly	congruent	direct	adjective
5418680	dodish	geck	congruent	direct	noun
5418680	dodish	geck	congruent	direct	noun
5418680	dodish	geck	congruent	direct	noun
5418680	dodish	geck	congruent	direct	noun
5418680	dodish	geck	congruent	direct	noun

computing congruence

- first, we remove NA trials
- keep only
congruent/incongruent trials
- keep only direct/shared associations

```
congruence_trials = association_trials %>%
    filter(!is.na(congruence))%>%
    filter(congruence %in% c("congruent", "incongruent")) %>%
    filter(type_of_association %in% c("direct", "shared"))
```


congruence counts

- create new dataframe called congruence_counts
- group by ID, congruent, association type, and cue type and compute a count
congruence_counts = congruence_trials \%>\%
group_by(ID, cue_type, congruence,type_of_association) \%>\% count()

ID	cue_type	congruence	type_of_association	n
5418680	adjective	congruent	direct	18
5418680	noun	congruent	direct	18
46356924	adjective	congruent	direct	15
46356924	adjective	incongruent	direct	2
46356924	noun	congruent	direct	5
46356924	noun	incongruent	direct	12
46356924	noun	incongruent	shared	1

congruence proportions

ID	cue_type	congruence	type_of_association	n	₹
5418680	adjective	congruent	direct	18	
5418680	noun	congruent	direct	18	
46356924	adjective	congruent	direct	15	
46356924	adjective	incongruent	direct	2	
46356924	noun	congruent	direct	5	
46356924	noun	incongruent	direct	12	
46356924	noun	incongruent	shared	1	

- next, group by ID and cue type and compute a proportion

```
congruence_counts = congruence_trials %>%
    group_by(ID, cue_type, congruence,type_of_association) %>%
    count() %>%
    group_by(ID, cue_type) %>%
    mutate(proportion = n / sum(n))
```

ID	cue_type	congruence	type_of_association	\hat{n}	n	proportion
5418680	adjective	congruent	direct	18	1.00000000	
5418680	noun	congruent	direct	18	1.00000000	
46356924	adjective	congruent	direct	15	0.88235294	
46356924	adjective	incongruent	direct	2	0.11764706	
46356924	noun	congruent	direct	5	0.27777778	
46356924	noun	incongruent	direct	12	0.66666667	
46356924	noun	incongruent	shared	1	0.05555556	

correcting for guessing

- we could just look at the proportion of trials that were congruent
- but this doesn't account for incongruent trials (or

```
congruence_counts %>%
    filter(congruence == "congruent") %>%
    ungroup()%>%
    summarise(mean_prop = mean(proportion))
```

! A tibble: 1×1
mean_prop
<dbl>
0.860 guessing)

- we want to subtract the proportion of incongruent trials from congruent trials

long vs. wide data

- data is often in 2 main formats:
- long
- wide
- Iong data has multiple rows indicating each observation
- wide data has multiple columns indicating each observation

converting to wide format

ID	cue_type	congruence	type_of_association	n \%	proportion
5418680	adjective	congruent	direct	18	1.00000000
5418680	noun	congruent	direct	18	1.00000000
46356924	adjective	congruent	direct	15	0.88235294
46356924	adjective	incongruent	direct	2	0.11764706
46356924	noun	congruent	direct	5	0.27777778
46356924	noun	incongruent	direct	12	0.66666667
46356924	noun	incongruent	shared	1	05555

- select relevant columns
- pivot_wider()
- specifies which columns to make wide and where to get the values from
wide_counts = congruence_counts \%>\% select(ID, cue_type,congruence, type_of_association, proportion) \%>\% pivot_wider(names_from = congruence, values_from = proportion)

ID	cue_type	type_of_association	congruent	incongruent
5418680	adjective	direct	1.00000000	NA
5418680	noun	direct	1.00000000	NA
46356924	adjective	direct	0.88235294	0.11764706
46356924	noun	direct	0.27777778	0.66666667

filling empty columns

- use mutate() to fill up NA values with Os
- create new proportion column that computes difference between congruent and incongruent proportions
- mean of prop column?
wide_counts = congruence_counts \%>\% select(ID, cue_type, congruence, type_of_association, proportion) \%>\% pivot_wider(names_from = congruence, values_from = proportion)\%>\% mutate(incongruent = ifelse(is.na(incongruent), 0, incongruent), congruent $=$ ifelse(is.na(congruent), 0, congruent))

-	ID *	cue_type		type_of_association		congruent	incongruent ${ }^{\text {* }}$
1	5418680	adjective		direct		1.00000000	0.00000000
2	5418680	noun		direct		1.00000000	0.00000000
3	46356924	adjective		direct		0.88235294	0.11764706
4	46356924	noun		direct		0.27777778	0.66666667

wide_counts = congruence_counts \%>\%
select(ID, cue_type,congruence, type_of_association, proportion) \%>\% pivot_wider(names_from = congruence, values_from = proportion)\%>\% mutate(incongruent = ifelse(is.na(incongruent), 0, incongruent), congruent = ifelse(is.na(congruent), 0, congruent))\%>\%
mutate(prop = congruent - incongruent)

ID	cue_type	type_of_association	congruent *	incongruent	prop
5418680	adjective	direct	1.00000000	0.00000000	1.00000000
5418680	noun	direct	1.00000000	0.00000000	1.00000000
46356924	adjective	direct	0.88235294	0.11764706	0.76470588

[^0]
going back to the analysis description

- what proportion of trials are congruent?

In the free association task, participants were asked to respond to the prompt word with one of the training triad words. They responded as instructed on an average 96% of the free association trials presented at the end of training. In addition, they tended to respond with training words that had directly co-occurred with the prompt word. Whereas 81% of participants' responses were based on direct co-occurrence, only 2% were based on shared co-occurrence regularities. ${ }^{3}$
> mean(wide_counts\$prop)
[1] 0.7194747

computing association proportions

- write, run, and interpret the code

- first-R-notebook.Rmd \times			association_type_occurrence \times	
$\checkmark \square$	E 8 Filter			
-	ID	cue_type	* direct	shared
1	5418680	adjective	1.0000000	$N A$
2	5418680	noun	1.0000000	$N A$
3	46356924	adjective	0.7647059	NA
4	46356924	noun	-0.3888889	-0.05555556
5	52271504	adjective	1.0000000	NA
6	52271504	noun	1.0000000	$N A$
7	59881077	adjective	0.6470588	$N A$
8	59881077	noun	1.0000000	NA
9	161705773	adjective	1.0000000	$N A$
10	161705773	noun	1.0000000	$N A$

```
## counts by type of association
association_type_occurrence = wide_counts %>%
    select(ID, cue_type, type_of_association, prop) %>%
    pivot_wider(names_from = type_of_association, values_from = prop) %>%
    mutate(shared = ifelse(is.na(shared), 0, shared),
        direct = ifelse(is.na(direct), 0, direct))
```

mean(association_type_occurrence\$direct)
mean(association_type_occurrence\$shared)
> mean(association_type_occurrence\$direct)
[1] 0.8387088
> mean(association_type_occurrence\$shared)
[1] -0.009946785

today's agenda

- association data analysis
- statistical inferences

making inferences from data

- the research cycle employs the scientific method to answer questions

logic of null hypothesis statistical testing

- formulate a hypothesis
- specify null and alternative hypotheses
- collect data relevant to the hypothesis
- fit a model to the data that represents the alternative hypothesis and compute a test statistic
- compute the probability of the observed value of that statistic assuming that the null hypothesis is true
- assess the "statistical significance" of the result

linear regression

- a linear regression (or a linear model) is a model that fits a line to a set of data points
- $Y=a X+b$
- Y : dependent variable
- X: independent variable
- a? b?
- a: slope, b: intercept
- sometimes, we reorder this equation:
- $y=\beta_{0}+\beta_{1} x$
- β_{0} intercept (where the line cuts the y-axis)
- β_{1} : slope (the change in y due to x)
- in this framework, the null hypothesis $\left(H_{0}\right)$ is that $\beta_{1}=$ 0 , i.e., there is no change in y due to x
- $H_{0}: \beta_{1}=0$

exploring the data

- new heading \# linear models
data(women)
- load the dataset women
- make a scatterplot of the data
- x = weight
- $y=$ height
- fit a line to the data via geom_smooth()

linear regression in R

- predict height by weight
- print the summary of the model
- what is the equation of the line?
women_model $=\operatorname{lm}($ data $=$ women, height \sim weight $) \mid$
summary(women_model)

Call:
lm (formula $=$ height \sim weight, data $=$ women $)$
Residuals:
Min 1Q Median 3Q Max
$-0.83233-0.26249 \quad 0.083140 .343530 .49790$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $25.7234561 .043746 \quad 24.642 .68 \mathrm{e}-12$ *** weight $0.287249 \quad 0.007588 \quad 37.851 .09 \mathrm{e}-144^{* * *}$

Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 0.44 on 13 degrees of freedom Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

linear regression and correlation

- correlations also describe the relationship between Y and X, so what's the difference?
- mathematically, correlations are equivalent to a linear model where a line is being fit to a set of data points
- two common correlation

Pearson

- β_{0} (intercept)
- β_{1} (slope)

Spearman

- Pearson's r: $r=$ slope if x and y have the same standard deviation
- Spearman's rho = same linear model but with ranks of x and Y
- $\operatorname{rank}(y)=\beta_{0}+\beta_{1} \operatorname{rank}(x)$

linear regression and correlation

- compute the standard deviation of the height and weight columns
- create two new columns that contain the z-scored height and weight
- compute the standard deviation of the z-scored height and weight columns
sd(women\$weight)

```
women = women %>%
    mutate(z_height = scale(height),
    z_weight = scale(weight))
```

sd(women\$height)
sd(women\$weight)

linear regression and correlation

- predict the z-scored height with the z-scored weight using linear regression
- now compute the correlation between the two columns using summarize() and cor()
women_model_2 = lm(data = women, z_height \sim z_weight)
summary(women_model_2)

Call:
lm(formula $=$ z_height \sim z_weight, data $=$ women)
Residuals
$\begin{array}{rrrrr}10 & \text { Median } & 3 Q & \text { Max } \\ & 10.0 & & \end{array}$
Coefficients:
Intercept) -8.268e-16 $2.541 \mathrm{e}-02$ value $\operatorname{Pr}(>|t|$
z_weight $\quad 9.955 \mathrm{e}-01 \quad 2.630 \mathrm{e}-02 \quad 37.85 \quad 1.09 \mathrm{e}-144^{* * *}$
Signif. codes: 0 ‘**' 0.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ',
Residual standard error: 0.0984 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF , p -value: $1.091 \mathrm{e}-14$
women \%>\%
summarise($r=$ cor(z_height, z_weight)) 10.9954948r

linear regression and t-tests

- unpaired/independent samples t-test
- $y=\beta_{0}+\beta_{1} x$
- $x=0$ or 1 (which group)
- $\mathrm{H}_{0}: \beta_{1}=0$
- comparing paired differences and testing whether the difference is significantly different from 0
- note that " x " here contains information about group membership for each y

revisiting iris

- recall that iris contains flower petal and sepal information for three species

subset of iris

- create a subset of iris that only contains setosa and virginica
- plot the petal lengths by species in a boxplot

\#\# t -test
- ` $\{r$ \}
iris_subset $=$ iris \%>\%
filter(Species \%in\% c("setosa", "virginica"))
iris_subset \%>\%
ggplot(aes $(x=$ Species, $y=$ Petal.Length $))+$ geom_col()

comparing

- create linear model
- conduct t-test

iris_subset_lm = lm(data = iris_subset, Petal.Length ~ Species) summary(iris_subset_lm)

```
Call:
lm(formula = Petal.Length ~ Species, data = iris_subset)
Nesiduals
Mrrrrrrarn
Coefficients
(Intercept) Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.46200 0.05786 25.27 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1', 1
```

Residual standard error: 0.4091 on 98 degrees of freedom
Multiple R-squared: 0.9623, Adjusted R-squared: 0.961
F-statistic: 2499 on 1 and $98 \mathrm{DF}, \mathrm{p}$-value: < $2.2 \mathrm{e}-16$
t.test(Petal.Length ~ Species, data = iris_subset)

Welch Two Sample t-test
data: Petal.Length by Species
$t=-49.986, \mathrm{df}=58.609, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
alternative hypothesis: true difference in means between group setosa and group virginica is not equal to 0 95 percent confidence interval.
$-4.253749-3.926251$
sample estimates:
mean in group setosa mean in group virginica

$$
1.462
$$

testing more than two groups

- a t-test is a special case of linear models
- it is also a special case of only comparing two groups
- example of comparing more than two groups?

next class

- before class
- submit: class survey (October)
- try: W10 quiz
- complete: piloting + feedback (Friday)
- apply: formative assignment \#2
- apply: pre-registration draft (milestone \#6)
- prep: complete all primers
- during class
- Nov 7: guest lecture: Dr. Kyle Featherston!
- Nov 9: ANOVAs and linear models

[^0]: mean(wide_counts\$prop)

