

CogLab: Making Inferences WEEK 11

recap: Oct 24/26, 2023

- what we covered:
- manipulating data using tidyverse verbs
- linear regression
- your to-do's were:
- prep: complete all primers
- prep: read about hypothesis testing
- schedule: group meeting

today's agenda

- linear regression continued
- two-way/multiple linear regression

linear regression

- a linear regression (or a linear model) is a model that fits a line to a set of data points
- $Y=a X+b$
- Y : dependent variable
- X: independent variable
- a? b?
- a: slope, b: intercept
- sometimes, we reorder this equation:
- $y=\beta_{0}+\beta_{1} x$
- β_{0} intercept (where the line cuts the y-axis)
- β_{1} : slope (the change in y due to x)
- in this framework, the null hypothesis $\left(H_{0}\right)$ is that $\beta_{1}=$ 0 , i.e., there is no change in y due to x
- $H_{0}: \beta_{1}=0$

linear regression in R

- predict height by weight
- print the summary of the model
- what is the equation of the line?
women_model $=\operatorname{lm}($ data $=$ women, height \sim weight $) \mid$
summary(women_model)

Call:
lm (formula $=$ height \sim weight, data $=$ women $)$
Residuals:
Min 1Q Median 3Q Max
$-0.83233-0.26249 \quad 0.083140 .343530 .49790$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $25.7234561 .043746 \quad 24.642 .68 \mathrm{e}-12$ *** weight $0.287249 \quad 0.007588 \quad 37.851 .09 \mathrm{e}-144^{* * *}$

Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 0.44 on 13 degrees of freedom Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

linear regression and correlation

- correlations also describe the relationship between Y and X, so what's the difference?
- mathematically, correlations are equivalent to a linear model where a line is being fit to a set of data points
- two common correlation

Pearson

- β_{0} (intercept)
- β_{1} (slope)

Spearman

- Pearson's r: $r=$ slope if x and y have the same standard deviation
- Spearman's rho = same linear model but with ranks of x and Y
- $\operatorname{rank}(y)=\beta_{0}+\beta_{1} \operatorname{rank}(x)$

linear regression and correlation

- compute the standard deviation of the height and weight columns
- create two new columns that contain the z-scored height and weight
- compute the standard deviation of the z-scored height and weight columns
sd(women\$weight)

```
women = women %>%
    mutate(z_height = scale(height),
    z_weight = scale(weight))
```

sd(women\$height)
sd(women\$weight)

linear regression and correlation

- predict the z-scored height with the z-scored weight using linear regression
- now compute the correlation between the two columns using summarize() and cor()
women_model_2 = lm(data = women, z_height \sim z_weight)
summary(women_model_2)

Call:
lm(formula $=$ z_height \sim z_weight, data $=$ women)
Residuals
$\begin{array}{rrrrr}10 & \text { Median } & 3 Q & \text { Max } \\ & 10.0 & & \end{array}$
Coefficients:
Intercept) -8.268e-16 $2.541 \mathrm{e}-02$ value $\operatorname{Pr}(>|t|$
z_weight $\quad 9.955 \mathrm{e}-01 \quad 2.630 \mathrm{e}-02 \quad 37.85 \quad 1.09 \mathrm{e}-144^{* * *}$
Signif. codes: 0 ‘**' 0.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ',
Residual standard error: 0.0984 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
F-statistic: 1433 on 1 and 13 DF , p -value: $1.091 \mathrm{e}-14$
women \%>\%
summarise($r=$ cor(z_height, z_weight)) 10.9954948r

linear regression and t-tests

- unpaired/independent samples ttest
- $y=\beta_{0}+\beta_{1} x$
- $x=0$ or 1 (which group)
- $H_{0}: \beta_{1}=0$
- comparing paired differences and testing whether the difference is significantly different from 0
- note that "x" here contains information about group membership
 for each y

revisiting iris

- recall that iris contains flower petal and sepal information for three species

subset of iris

- create a subset of iris that only contains setosa and virginica
- plot the petal lengths by species in a boxplot

\#\# t -test
- ${ }^{\prime}\{r\}$
iris_subset $=$ iris \%>\%
filter(Species \%in\% c("setosa", "virginica"))
iris_subset \%>\%
ggplot(aes $(x=$ Species, $y=$ Petal.Length $))+$ geom_col()

comparing

- create linear model
- conduct t-test

iris_subset_lm = lm(data = iris_subset, Petal.Length ~ Species) summary(iris_subset_lm)

```
Call:
lm(formula = Petal.Length ~ Species, data = iris_subset)
Nesiduals
Mrrrrrrarn
Coefficients
(Intercept) Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.46200 0.05786 25.27 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1', 1
```

Residual standard error: 0.4091 on 98 degrees of freedom
Multiple R-squared: 0.9623, Adjusted R-squared: 0.961
F-statistic: 2499 on 1 and $98 \mathrm{DF}, \mathrm{p}$-value: < $2.2 \mathrm{e}-16$
t.test(Petal.Length ~ Species, data = iris_subset)

Welch Two Sample t-test
data: Petal.Length by Species
$t=-49.986, \mathrm{df}=58.609, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
alternative hypothesis: true difference in means between group setosa and group virginica is not equal to 0 95 percent confidence interval.
$-4.253749-3.926251$
sample estimates:
mean in group setosa mean in group virginica

$$
1.462
$$

testing more than two groups

- a t-test is a special case of linear models
- it is also a special case of only comparing two groups
- example of comparing more than two groups?

ANOVA: Analysis of Variance

- a generalized t-test for more than two means/groups!
- key idea: we will try to understand the difference between groups and whether it can be attributed to our "conditions" or randomness
- $S S_{\text {between }}=$ variation between groups
- $S S_{\text {within }}=$ variation within groups
- $F=S S_{\text {between }} / S S_{\text {within }}$
- If $\mathrm{F}>1$, the group differences are greater than what would be expected as random variation within groups

Between-group variation
(i.e. Differences among group means)

Within-group variation (i.e. Variability within each group)

types of ANOVAs

- n (independent variables)
- one-way
- two-way
- three-way
- within or between subjects
- between subjects: regular ANOVA
- within-subjects: repeated measures ANOVA

Between-group variation
(i.e. Differences among group means)

Within-group variation
(i.e. Variability within each group)

one-way ANOVA

- predict the petal lengths using the full iris dataset


```
full_iris_model = lm(data = iris, Petal.Length ~ Species)
summary(full_iris_model)
```

Call:
$\operatorname{lm}($ formula $=$ Petal.Length \sim Species, data $=$ iris)

Residuals
Min 1Q Median 3Q Max
$\begin{array}{lllll}-1.260 & -0.258 & 0.038 & 0.240 & 1.348\end{array}$
Coefficients:
(Intercept) Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	1.46200	0.06086	24.02	$<2 e-16^{* *}$
Speciesversicolor	2.79800	0.08607	32.51	$<2 e-16^{* * *}$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ,
Residual standard error: 0.4303 on 147 degrees of freedom Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406 F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16

```
full_iris_aov = aov(data = iris, Petal.Length ~ Species)
summary(full_iris_aov)
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq \(F\) value \(\operatorname{Pr}(>F)\) \\
Species & 2 & 437.1 & 218.55 & \(1180<2 e-16 * * *\) \\
Residuals & 147 & 27.2 & 0.19 & &
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


follow-up tests

- when more than two groups are present, it can be useful to understand exactly which groups differ from each other
- install emmeans package
- load the package inline and compute pairwise differences
- compare to lm summary

Coefficients:

	Estimate	Error		r $(>\|t\|)$	
(Intercept)	1.46200	0.06086	24.02	<2e-16	
Speciesversicolor	2.79800	0.08607	32.51	<2e-16	***
Speciesvirginica	4.09000	0.08607	47.52	<2e-16	

Residual standard error: 0.4303 on 147 degrees of freedom Multiple R-squared: 0.9414, Adjusted R-squared: 0.9406 F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16

```
#install.packages("emmeans")
```

emmeans: :emmeans(full_iris_model,
pairwise ~ Species,
adjust="tukey")
\$emmeans
Species emmean SE df lower.CL upper.CL
$\begin{array}{lllll}\text { setosa } & 1.46 & 0.0609 & 147 & 1.34 \\ & 1.58\end{array}$ versicolor $4.260 .0609147 \quad 4.14 \quad 4.38$ $\begin{array}{lllll}\text { virginica } & 5.550 .0609 & 147 & 5.43 & 5.67\end{array}$

Confidence level used: 0.95

\$contrasts
contrast
setosa - versicolor setosa - virginica versicolor - virginica

next class

- before class
- resubmit: formative assignment \#2
- finalize: experiment
- submit: pre-registration
- during class
- multiple regression in R
- linear models for non-independent data

