

CogLab: Variation WEEK 12

where are we?

- literature review
- asking questions
- experiment creation [HTML/jsPsych]

design

• R & Rstudio

- describe data
- infer from data

analyze

pre-registration

- poster
- short report

communicate

where are we?

design

analyze

• R & Rstudio

describe data

infer from data

pre-registration
 poster
 short report
 communicate

today's agenda

- data collection + analyses check-in
- understanding variation
- poster design principles

what is variation?

- statistical analyses such as t-tests and ANOVAs often tend to emphasize means between conditions
- but variation is fundamental to these tests and often a core part of the underlying machinery
- data = a combination of central tendency and variation
- data = model + error
- variation refers to the spread of data points around the central tendency for any set of data

variation in common statistical tests

• most statistical tests care deeply about the variation in data points (as they should)!

t-tests

- standard deviations used to calculate the t statistic
- ANOVAs
 - sums of squared (standard) deviations (SS) differentiate between the signal (SS_{between} or SS_{model}) and noise (SS_{within} or SS_{error})
- regression?
 - fits the line $y = \beta_0 + \beta_1 x$ that minimizes sums of squares
 - Total SS = $SS_{explained} + SS_{residual}$

so how do we visualize variation?

- our analyses do incorporate variation in different ways (based on the statistical test)
- our visualizations, however, sometimes lack in displaying the full spread of the data
- what kinds of plots have we seen so far and which of them show any form of variation?

boxplots

- "five-number summary"
 - the minimum
 - the first quartile (25th percentile)
 - the median
 - the third quartile (75th percentile)
 - the maximum
- implicit measures:
 - IQR: 25th to 75th percentile
 - minimum: Q1 1.5*IQR
 - maximum: Q3 + 1.5*IQR

bar plots

- bar plots often display the means for the relevant conditions in psychological studies
- but what about variability??
- a few different options:
 - error bars that denote some type of variation
 - what could this be?
 - an overlay of original data points in each condition

open your RStudio project

- open the first-jspsych project and your .Rmd file
- load tidyverse and ggthemes
- DON'T run all chunks no need today!

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot data("jobsatisfaction", package = "datarium")

jobsatisfaction %>%
group_by(gender, education_level) %>%
summarise(mean_score = mean(score))%>%
ggplot(aes(x = education_level, y = mean_score,
 group = gender, fill = gender))+
geom_col(position = "dodge")+
scale_fill_hc()+
theme_few()

exercise 2: adding variation

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe

exercise 2: adding variation

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe
 - use geom_errorbar to add an error bar to each bar of your plot

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
            group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = mean_score-sd_score,
            ymax = mean_score+sd_score),
            width = .25,
            position = position_dodge(width=0.9))+
scale_fill_hc()+
theme_few()
```


ggplot2::geom_errorbar()

- geom_errorbar allows you to add error bars to your lines or bar plots
- it requires:
 - ymin/ymax: where to start and end the bar (we can use mean ∓ standard deviation)
 - width: how wide the error bar should be
 - position: where should the error bar be, need to play around with this usually
- try removing width or position and see what happens!

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
            group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = mean_score-sd_score,
            ymax = mean_score+sd_score),
            width = .25,
            position = position_dodge(width=0.9))+
scale_fill_hc()+
theme_few()
```


other forms of variation

- standard deviation is often used to describe the variation around the mean of a sample of data points
 - why not use variance?
- standard errors: an estimate of "accuracy" of the mean, i.e., how far the mean is on "average" from all other means
 - SE = sd / sqrt (n)
 - higher n means lower SE, i.e., more confidence in your estimate
- confidence intervals
 - another way to assess the reliability of your sample: indicates how often the true mean is likely to be within a given interval, if repeated samples were drawn of the same size
 - CI = sample mean \mp z * SE
 - can also be "bootstrapped", i.e., does not need to assume normality

best of both worlds: points + bar plot

- sometimes, we can combine the power of SE/confidence intervals (accuracy/reliability) with variation using two elements (error bars and points)
- involves:
 - calculating SE (which requires the "n" in each condition)
 - calculating confidence intervals based on underlying distribution

counts = jobsatisfaction %>%
 group_by(gender, education_level) %>%
 count()

```
mean_scores = jobsatisfaction %>%
group_by(gender, education_level) %>%
summarise(mean_score = mean(score),
        sd_score = sd(score)) %>%
left_join(counts) %>%
mutate(SE = sd_score/sqrt(n),
   ymin = mean_score - 1.96*SE,
   ymax = mean_score + 1.96*SE)
```

putting it all together...

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
    group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = ymin, ymax = ymax),
    width = .25,
    position = position_dodge(width=0.9))+
geom_point(data = jobsatisfaction, aes(x = education_level, y = score,
    group = gender),
    position = position_jitterdodge(),
    alpha = 0.3)+
```

scale_fill_hc()+
theme_few()

next time

- before class
 - *monitor*: data collection on Sona + Prolific
 - work on: project milestone #6b (analyses) and 7 (poster draft)
- during class
 - poster design