

CogLab: Odds and Ends WEEK 14

what's coming up

14	Wednesday, November 29, 2023	Project Milestone #7 (Analyses) Due
14	Thursday, November 30, 2023	W14 continued
14	Sunday, December 3, 2023	Project Milestone #8 (Poster Draft) Due
15	Tuesday, December 5, 2023	<u>W15: Wrapping Up</u>
15	Thursday, December 7, 2023	Project Milestone #9 (Poster Symposium) Due
16	Sunday, December 17, 2023	Project Milestone #10 (Final Report) Due

November class survey

- last extra credit survey, due Dec 3
- link on Canvas
- BCQs will be completed on Tuesday (Dec 5) in class
- last class agenda:
 - final check-in / Qs about final milestones
 - survey responses / discussion
 - memer of the semester survey!!

today's agenda

- data collection + analyses check-in
- plotting variation
- poster design principles

data collection + analyses check-in

what is variation?

- statistical analyses such as t-tests and ANOVAs often tend to emphasize means between conditions
- but variation is fundamental to these tests and often a core part of the underlying machinery
- data = a combination of central tendency and variation
 - examples of central tendencies?
 - examples of variation?
- variation refers to the spread of data points around the central tendency for any set of data

variation in common statistical tests

- most statistical tests care deeply about the variation in data points (as they should)!
- t-tests
 - standard deviations used to calculate the t statistic
- ANOVAs
 - sums of squared (standard) deviations (SS) differentiate between the signal (SS_{between}) and noise (SS_{within})
- regression?
 - fits the line $y = \beta_0 + \beta_1 x$ that minimizes sums of squares
 - Total SS = $SS_{explained} + SS_{residual}$

https://analystprep.com/study-notes/cfa-level-2/quantitative-method/anova-and-standard-error-ofestimate-in-simple-linear-regression/

so how do we visualize variation?

- our analyses do incorporate variation in different ways (based on the statistical test)
- our visualizations, however, sometimes lack in displaying the full spread of the data
- what kinds of plots have we seen so far and which of them show any form of variation?

boxplots

- "five-number summary"
 - the minimum
 - the first quartile (25th percentile)
 - the median
 - the third quartile (75th percentile)
 - the maximum
- implicit measures:
 - IQR: 25th to 75th percentile
 - minimum: Q1 1.5*IQR
 - maximum: Q3 + 1.5*IQR
- what is an "outlier" based on a boxplot and where have we used this definition?

bar plots

- bar plots often display the means for the relevant conditions in psychological studies
- but what about variability??
- a few different options:
 - error bars that denote some type of variation
 - what could this be?
 - an overlay of original data points in each condition

open your RStudio project

- open the project and your .Rmd file
- load the packages by running the relevant chunk
- DON'T run all chunks no need today!

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot data("jobsatisfaction", package = "datarium")

```
jobsatisfaction %>%
group_by(gender, education_level) %>%
summarise(mean_score = mean(score))%>%
ggplot(aes(x = education_level, y = mean_score,
            group = gender, fill = gender))+
geom_col(position = "dodge")+
scale_fill_hc()+
theme_few()
```


exercise 2: adding variation

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe

exercise 2: adding variation

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe
 - use geom_errorbar to add an error bar to each bar of your plot

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
            group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = mean_score-sd_score,
            ymax = mean_score+sd_score),
            width = .25,
            position = position_dodge(width=0.9))+
scale_fill_hc()+
theme_few()
```


ggplot2::geom_errorbar()

- geom_errorbar allows you to add error bars to your lines or bar plots
- it requires:
 - ymin/ymax: where to start and end the bar (we can use mean ∓ standard deviation)
 - width: how wide the error bar should be
 - position: where should the error bar be, need to play around with this usually
- try removing width or position and see what happens!

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
            group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = mean_score-sd_score,
            ymax = mean_score+sd_score),
            width = .25,
            position = position_dodge(width=0.9))+
scale_fill_hc()+
theme_few()
```

other forms of variation

- standard deviation is often used to describe the variation around the mean of a sample of data points
 - why not use variance?
- standard errors: an estimate of "accuracy" of the mean, i.e., how reliable is your mean, based on the sample size
 - SE = sd / sqrt(n)
 - higher n means lower SE, i.e., more confidence in your estimate
- confidence intervals
 - another way to assess the reliability of your sample: indicates how often the true mean is likely to be within a given interval, if repeated samples were drawn of the same size
 - CI = sample mean \mp z * SE
 - can also be "bootstrapped", i.e., does not need to assume normality

best of both worlds: points + bar plot

- sometimes, we can combine the power of SE/confidence intervals (accuracy/reliability) with variation using two elements (error bars and points)
- involves:
 - calculating SE (which requires the "n" in each condition)
 - calculating confidence intervals based on underlying distribution

counts = jobsatisfaction %>%
 group_by(gender, education_level) %>%
 count()

putting it all together...

```
mean_scores %>%
ggplot(aes(x = education_level, y = mean_score,
    group = gender, fill = gender))+
geom_col(position = "dodge")+
geom_errorbar(aes(ymin = ymin, ymax = ymax),
    width = .25,
    position = position_dodge(width=0.9))+
geom_point(data = jobsatisfaction, aes(x = education_level, y = score,
    group = gender),
    position = position_jitterdodge(),
    alpha = 0.3)+
```

scale_fill_hc()+
theme_few()

key takeaways

• variation is good, both in tests and visuals!

- use some form of variation in your plots when you make your posters
 - give the reader a window into your sample!
 - can be standard deviation, standard errors, confidence intervals, points, or ALL of this!
 - could also use boxplots + bar plots

project milestone #8: poster draft

- general tips:
 - de-clutter, keep the text to a minimum
 - use tables/figures wherever possible (procedure, results, etc.)
 - use variation!
 - use symmetry and colors to guide the reader
 - think of what you will say and organize in a logical manner
- sample posters/resources up on course website

poster contents

- introduction
 - why is this topic important, what can we learn?
 - background & current research question
 - ideas: venn diagrams, smart art, etc.
- methods
 - IV/DV, items, counterbalancing etc.
 - ideas: design figure, sample trial, etc.
- analysis
 - statistical tests & results, inclusion/exclusion criteria, etc.
 - ideas: tables, figures with p-values, regular figure
- conclusion / future steps
 - small and picture: what did you learn? where do you see it going?

statistics in posters

- less text, more images & numbers
- use the same format to report statistics but edit out all the text and point to figures

pwc: T test; p.adjust: Bonferroni

next time

- before class
 - *monitor*: data collection on Sona + Prolific
 - complete: Week 13 quiz (inferences, due Dec 3)
 - fill out: class survey (due Dec 3)
 - resubmit: formative milestone #3 (due Dec 3)
- during class (Dec 5)
 - wrapping up!!