

CogLab: Visualize Data

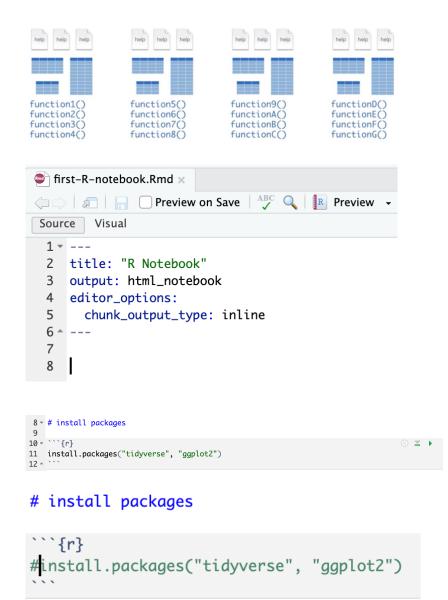
WEEK 8

recap: Oct 12, 2023

- what we covered:
 - reviewing data analysis plan
 - R 101
- your to-do's were:
 - prep: Visualization Basics primer from posit
 - prep: work on project milestone #5
 - prep: work on formative milestone #1 resubmission

today's agenda

- packages in R
- graphing data


open your RStudio project

• open the project and your .Rmd file

packages in R

- packages contain functions
- before we can use them, we need to install packages
 - installation only happens once
- inside your notebook, delete everything after the last ---
- create a new heading # install packages
- create a new code chunk using command + option + I
 - or use the green C icon
- install tidyverse
- run the chunk:
 - command + shift + enter OR green play button
- comment (#) the install line after installation is complete (we will not need to do this again)

Packages

tidyverse

- a package of packages, which contain their own functions
- extremely flexible ways of manipulating and plotting data

loading packages in R

- we must always load the packages when we want to run code that uses functions from those packages
- create a new heading # load packages
- create a new code chunk
- load tidyverse
- run the chunk
- save your notebook

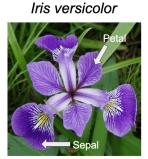
```
# load packages
```{r}
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
 method
 from
 print.tbl_lazy
 print.tbl_sql

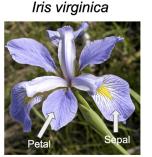
 Attaching packages

ggplot2 3.4.0
 ✓ purrr 1.0.1
✓ tibble 3.1.8

✓ dplyr 1.0.10

✓ tidyr 1.3.0


✓ stringr 1.5.0


 2.1.3
 ✓ forcats 0.5.2 — Conflicts
✓ readr
 tidyverse
* dplyr::filter() masks stats::filter()
* dplyr::lag()
 masks stats::laa()
```

### examining a dataframe

- view the iris dataset
- how many rows and columns?
- what are the column names?
- research question: how are the species different from each other?
- first we plot, then we analyze







iris x									
^	Sepal.Length <sup>‡</sup>	Sepal.Width	Petal.Length	Petal.Width <sup>‡</sup>	Species				
1	5.1	3.5	1.4	0.2	setosa				
2	4.9	3.0	1.4	0.2	setosa				
3	4.7	3.2	1.3	0.2	setosa				
4	4.6	3.1	1.5	0.2	setosa				
5	5.0	3.6	1.4	0.2	setosa				
6	5.4	3.9	1.7	0.4	setosa				
7	4.6	3.4	1.4	0.3	setosa				
8	5.0	3.4	1.5	0.2	setosa				
9	4.4	2.9	1.4	0.2	setosa				
10	4.9	3.1	1.5	0.1	setosa				

> nrow(iris)

[1] 150

> ncol(iris)

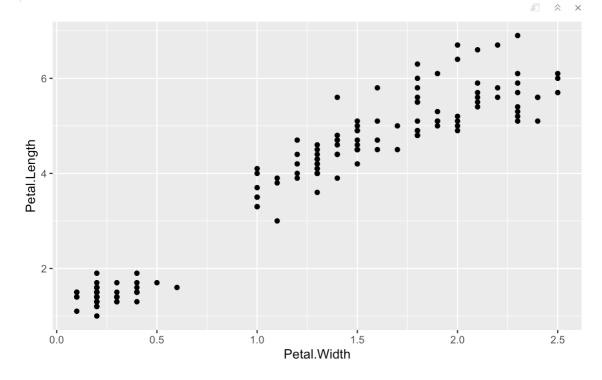
[1] 5

> colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

### the grammar of graphics

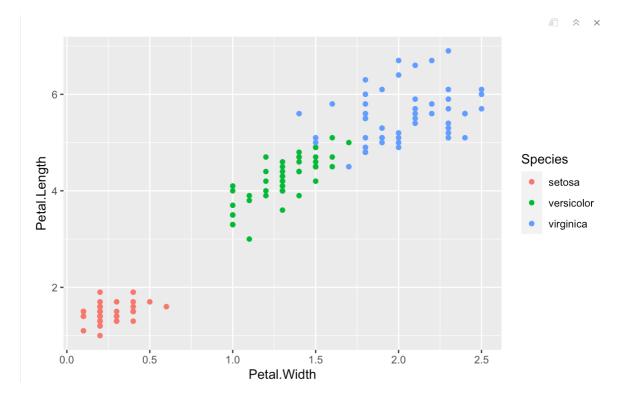
- converting data to a visual display
- ggplot() is a function from the ggplot2 package, which is included in the tidyverse
- three key steps to use ggplot():
  - select a dataset
  - pick a geometric object
  - specify aesthetics



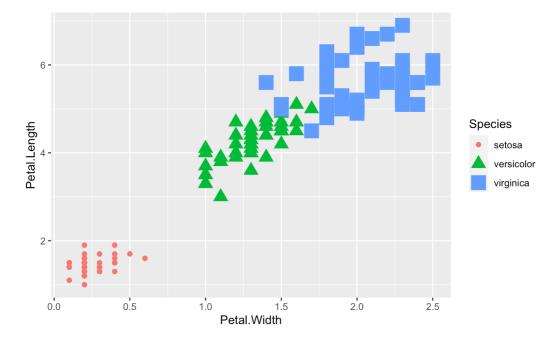

### ggplot basic structure

- plot the petal width (x) and length (y) from the iris dataset
- ggplot() specifies the dataset and creates an empty graph
- geom\_point() adds a layer of points to this empty graph
- mapping specifies how to map the data to the points

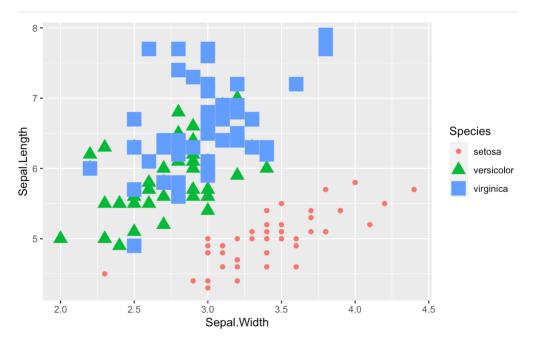
```
plot iris


```{r}
ggplot(data = iris)+
  geom_point(mapping = aes(x = Petal.Width, y = Petal.Length))
```

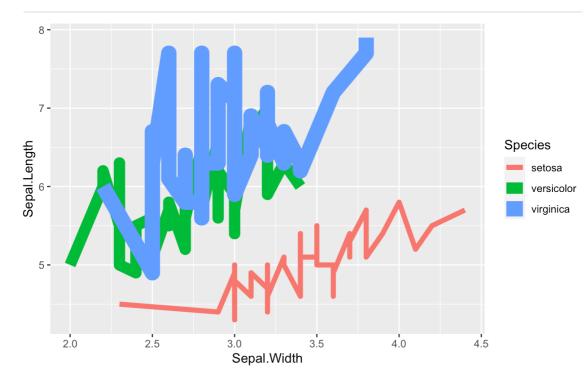

aesthetics


- aesthetics define visual properties of objects in the plot
- allow us to include a third variable in a 2-d plot using properties like size, shape, color, etc.
- map the color of the points to species

```
'``{r}
ggplot(data = iris)+
  geom_point(mapping = aes(x = Petal.Width, y = Petal.Length, color = Species))
'``
```



other aesthetics

- map size and shape to the species as well
- is petal information helpful is distinguishing the species?


exercise

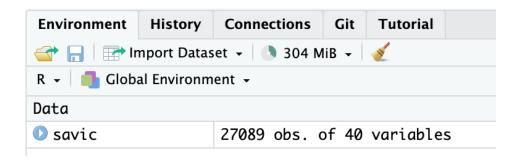
- plot sepal width and length for the three species
- is sepal information helpful is distinguishing the species?

geometric objects

- geoms specify the type of visual object that will be used to display the data
 - scatterplots: geom_point()
 - histograms: geom_histogram ()
 - density plots: geom_density()
 - bar plots: geom_bar() / geom_col()
 - line plots: geom_line()
 - curves: geom_smooth()
 - boxplots: geom_boxplot()
- change geom_point() to geom_line() in the sepal plot

displaying aggregate information

- if you simply wanted to display the aggregate information, bar/column plots are more suitable
- use geom_col() to display the petal lengths as a function of species
- fill the plot with any color you want (<u>colors in R</u>)
- add a theme to the plot (<u>agplot2</u> themes)


```
gaplot(data = iris)+
 geom\_col(mapping = aes(x = Species, y = Petal.Length))
ggplot(data = iris)+
  geom_col(mapping = aes(x = Species, y = Petal.Length), fill =
 ggplot(data = iris)+
  geom_col(mapping = aes(x = Species, y = Petal.Length), fill =
   theme_classic()
```

class data

- create a new heading# load class data
- read in class data via read_csv
- save and run the chunk
- view the data

```
# load class data

```{r}
savic = read_csv("class_data.csv")
```



View(savic)

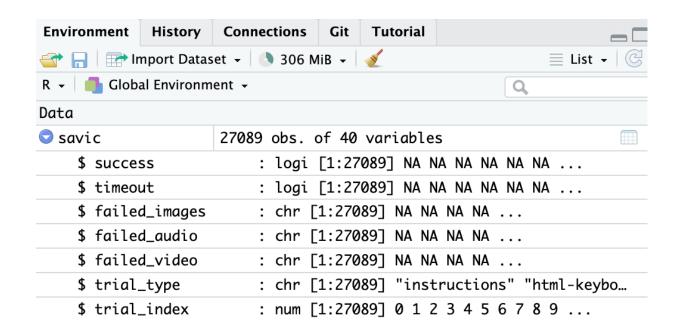
### class data

- how many rows?
- how many columns?
- what are the column names?
- research question?

```
basic info

```{r}

nrow(savic)


ncol(savic)

colnames(savic)

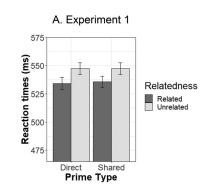
...
```

exploring data types

- look at the default data types assigned to these columns in our dataframe
- ID
- rt
- typeoftrial
- relatedness
- type

histogram of reaction time

- create a new chunk titled # histogram of RT
- use ggplot to plot response time from the dataframe
- an error may be returned if R does not recognize RT as a number
- we can change the type of the column


```
# histogram of RT
```{r}
ggplot(data = savic) +
 geom_histogram(mapping = aes(x= rt))
histogram of RT
```{r}
ggplot(data = savic) +
```

```
geom_histogram(mapping = aes(x= as.numeric(rt)))
```

what kind of plots do we want?

- think about each piece of data we will analyze
- which kind of plot will best capture those data?

analysis preview

phase	measure	type	exclusion criteria
attention	accuracy	descriptive	< 0.75
association	proportion of correct/congruent responses + direct/shared responding	descriptive	
priming	RT _{related} vs. RT _{unrelated} for direct and shared pairs	inferential (mixed effects model / ANOVA)	RT < 200 ms and RT > 1500 ms correct responses related/unrelated and direct/shared trials

HW: fixing accuracy

AB	AC	AD	AE	AF	AG	АН	AI	AJ
response	revised_response	sentence	novel1	novel2	novel3	correct	revised_correct	cue
sh it were easier to	o get a foobly mipp.	Sometimes I wis	foobly	mipp	NOT_FOUND			
cided I'd go looking for a foobly apple.		In the end, I deci	foobly	NOT_FOUND	NOT_FOUND			
et there told me they saw a foobly apr		The people I me	foobly	NOT_FOUND	NOT_FOUND			
I would like a dodish horse better.		I am not sure if I	dodish	NOT_FOUND	NOT_FOUND			

- go to revised class data on drive
- group task: fix the data!
 - Semantic Snakes: fix the attention check responses + accuracy
 - Berries: fix association responses, IDs 275998227- 276772242
 - Nellaphen: fix association responses, IDs 823472278 988749039
- complete before Tuesday (Oct 24)

next class

• before class

- prep: Work with Data primer
- try: HW, fix the data!
- apply: Week 8 Quiz
- apply: formative milestone # 1 resubmission
- apply: project milestone 5 (full experiment)
- during class
 - manipulating data