

CogLab: Manipulate Data WEEK 8

logistics: formative assignments

- formative assignment #1: resubmission due Sunday
- formative assignment #2: descriptive statistics and plotting in R
 - due Nov 3

7	Monday, Oct 21, 2024	Project Milestone #4 (Full Experiment) Due
8	Tuesday, October 22, 2024	<u>W8: Manipulate Data</u>
8	Thursday, October 24, 2024	W8 continued
8	Sunday, October 27, 2024	Formative Assignment (jsPsych) Resubmission Due
9	Tuesday, October 29, 2024	<u>W9: Making Inferences</u>
9	Thursday, October 31, 2024	W9 continued
9	Sunday, November 3, 2024	Formative Assignment (R Descriptive) Due
10	Tuesday, November 5, 2024	Weeks 10-12: Data Collection
10	Thursday, November 7, 2024	Weeks 10-12: Data Collection
10	Sunday, November 10, 2024	Formative Assignment (R Inferential) Due
11	Tuesday, November 12, 2024	Weeks 10-12: Data Collection
11	Thursday, November 14, 2024	Weeks 10-12: Data Collection
11	Sunday, November 17, 2024	Formative Assignment (R Descriptive) Resubmission Due
11	Monday November 18, 2024	Project Milestone #5 (Pro-Pegistration) Due

mid-semester survey

- available on canvas + course website
- counts towards extra credit
- due Monday
- your feedback and reflections are really important!
- anonymous

Extra credit (5 points)

There will be some opportunities to earn extra credit during the semester. These opportunities are described below:

- <u>Complete class surveys (2 points)</u>: There will be 3 surveys (beginning, mid-semester, end of semester) to gather your reflections and suggestions to improve the course. With the exception of the pre-class survey (which is mandatory), all other surveys will be anonymous, and you will be able to earn 1 point for each survey you complete.
- 2. <u>Win Star Coder (2 points)</u>: You will submit 3 formative coding assignments during the semester. The student who scores the combined highest score on the FIRST attempt for these assignments will earn 1 extra credit.
- 3. <u>Win Team Player (1 point)</u>: Throughout the course, I will also evaluate who stood out as a team player, by observing how you participate in groups and contribute to group work. The student who stands out in this respect will earn 1 extra credit point.

logistics: project

- next milestone #6: pre-registration (Nov 18: might move)
- **before** pre-registration:
 - providing accuracy feedback on priming trials
 - recording IP addresses
 - commenting the condition definition inside cognition.run
 - piloting your experiment (Uma + other group + 5 friends, N = 8), pilot feedback sheet
 - send cognition.run link by Nov 10
 - finalizing analysis plan + sample size

	Pilot 1
Which browser were you using?	
Which operating system (Mac / Windows / iPad, etc.)	
Date of piloting	
Were instructions clear? Please note down which instructions had typos / were unclear	
How long did the task take you?	
Was there a consent form?	
Was the demographic survey displayed correctly?	
Did you see the data being displayed at the end of the study?	
What do you think the experiment was about?	
Any other comments?	

recap

- what we covered:
 - R101, data analysis plan
 - visualizing data
- your to-do's were:
 - apply: project milestone 5 (full experiment)
 - prep: start Transform Tables recipes

≥ posit Cloud	Guide W	hat's New	Recipes	Cheatsheets
Posit Recipes	Some tasty R	code snipp	ets	
R Basics		Trans	sform Ta	ables
Do basic tasks with R, like call functions.	import data and	Do thin tables c	gs like filter, f data.	sort, and pivot your
 Read a CSV file (.csv) Read a character-deli 	mited file (.txt)	• Ext tab	ract columns le	s from a table as a new

• Read an Excel file (.xls..xlsx)

• Rename columns in a table

today's agenda

- tidyverse verbs
 - select()
 - filter()
 - mutate()
 - summarize()
 - group_by()

open your RStudio project

- open the project and your .Rmd file
- run all chunks

→ Run Selected Line(s)	£
Run Current Chunk	ዕዝቍ
Run Next Chunk	Σ₩N
Run Setup Chunk	
Run All Chunks Above	ጚዕ <mark></mark> ജዖ
Run All Chunks Below	
Run All	∖C₩R

an experiment

- I will show you a sentence
- then I will show you an image
- raise your dominant hand if the object shown was mentioned in the sentence
- raise your non dominant hand otherwise

you drop a bowling ball on a tomato

object state changes dataset

- task: object verification from sentences presented to participants
- research questions: do the events mentioned in the sentences influence response time?
- RT (bowling ball + squashed tomato) VS.
 RT (bowling ball + intact tomato)
- RT (balloon + squashed tomato) VS.
 RT (balloon + intact tomato)

Oleksandr V. Horchak and Margarida Vaz Garrido Iscte-Instituto Universitário de Lisboa

review: importing new data

- create a new a # tidyverse
 verbs heading and code chunk
- download <u>objects.csv</u>
- import this data into your notebook and name it objectdata
- how many rows and columns?

tidyverse verbs

```{r}
objectdata = read\_csv("objects.csv")
```

🕘 f	first–R–notebo	ok.Rmd ×	objectdata ×					
) 🗊 🖓	Filter						Q
^	success 🔅	timeout 🗦	failed_images 🗧	failed_audio 🗦	failed_video 🗦	typeoftrial 🗦	subject 🗦	trial_type
1	TRUE	FALSE	0	0	0	preload	77491	preload
2	NA	NA	NA	NA	NA	ID	77491	survey-text
3	NA	NA	NA	NA	NA	instructions	77491	html-button-response
4	NA	NA	NA	NA	NA	instructions	77491	html-button-response
5	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
6	NA	NA	NA	NA	NA	sentence	77491	html-keyboard-response
7	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
8	NA	NA	NA	NA	NA	picture	77491	image-keyboard-response
•	4/4		A.I.A.		47.4			I I. I I I

tidyverse verbs

- often, your experiment data is not in analysis-ready format
- you may need to delete some rows, select some columns, arrange the data, etc.
- tidyverse verbs allow you to manipulate the dataframe and make it analysis and plottingfriendly

first-R-notebook.Rmd x objectdata x								
⟨□□⟩ 2 Filter								
-	success 🍦	timeout 🍦	failed_images 🍦	failed_audio 🚊	failed_video 🗦	typeoftrial 🍦	subject 🍦	trial_type
1	TRUE	FALSE	[]	0	0	preload	77491	preload
2	NA	NA	NA	NA	NA	ID	77491	survey-text
3	NA	NA	NA	NA	NA	instructions	77491	html-button-response
4	NA	NA	NA	NA	NA	instructions	77491	html-button-response
5	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
6	NA	NA	NA	NA	NA	sentence	77491	html-keyboard-response
7	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
8	NA	NA	NA	NA	NA	picture	77491	image-keyboard-response
~				A.I.A.	A.I.A.	A.I.A.		1

tidyverse piping

- piping is a way to define a sequence of operations in R
- this is accomplished using %>%
- the idea is that you use the same data but perform multiple operations on it using the pipe
- we will use piping to combine different operations together

tidyverse: select()

- select() allows you to retain only specific columns from your dataframe
- useful when your data contains too many unnecessary columns that are not relevant for analysis
- what columns might be important in this dataset?
- print the column names and let's make a list!

🕘 f	🕥 first-R-notebook.Rmd 🗴 🔲 objectdata 🗴 💼 🗖							
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						Q	
*	success 🌐	timeout 🗦	failed_images 🍦	failed_audio 🍦	failed_video 🍦	typeoftrial 🍦	subject 🍦	trial_type
1	TRUE	FALSE	[]	[]	0	preload	77491	preload
2	NA	NA	NA	NA	NA	ID	77491	survey-text
3	NA	NA	NA	NA	NA	instructions	77491	html-button-response
4	NA	NA	NA	NA	NA	instructions	77491	html-button-response
5	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
6	NA	NA	NA	NA	NA	sentence	77491	html-keyboard-response
7	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response
8	NA	NA	NA	NA	NA	picture	77491	image-keyboard-response
^			A.F.A.	A.I.A.	A.I.A.	8.7.A		на на тока на селото

tidyverse: select()

- logic of piping:
 - start with the dataset
 - add a pipe
 - specify an action
- select RT, weight, and shape from objectdata
- run the chunk
- what do you see?
- ALL trials are being included because select only picks the columns, not the rows

objectdata %>%
 select(rt, weight, shape)

A tibble: 34,057 × 3

	rt	weight	shape				
	<chr></chr>	<chr></chr>	<chr></chr>				
1	NA	NA	NA				
2	11783	NA	NA				
3	51986	NA	NA				
4	21791	NA	NA				
5	null	NA	NA				
6	4589	practice	n				
7	null	NA	NA				
8	6443	practice	n				
9	null	NA	NA				
10	null	NA	NA				
#	i 34,0	47 more ro	OWS				
#	i Use	`print(n =	=)`	to	see	more	rows

tidyverse: filter()

- filter() allows you to retain only specific rows from your dataframe
- if we need only the picture trials, we can use filter to do this before we select our columns
- notice how we've used the pipe to continue our code
- run this chunk again!
- what do you notice now?

objectdata %>%
 filter(typeoftrial == "picture") %>%
 select(rt, weight, shape)

	rt	weight	shape
	<chr></chr>	<chr></chr>	<chr></chr>
1	6443	practice	n
2	6516	practice	S
3	7821	practice	S
4	2096	practice	S
5	2849	filler	NA
6	3256	Heavy	Smashed
7	1698	filler	NA
8	1615	Light	Normal
9	1619	Неа∨у	Smashed
LØ	1304	Light	Normal

tidyverse: filter()

- the data is a lot better now but still contains filler and practice trials
- we could add an additional conditions in our filter statement that restrict the values of weight and shape
- the & operator combines different constraints we want to apply to the data

objectdata %>%	
filter(typeoftrial == "picture"	& weight %in% c("Heavy", "Light") &
<pre>shape %in% c("Normal",</pre>	"Smashed")) %>%
<pre>select(rt, weight, shape)</pre>	

# 4	A tibbl	.e: 2,37	⁷ 6 × 3
	rt	weight	shape
	<chr></chr>	<chr></chr>	<chr></chr>
1	3256	Hea∨y	Smashed
2	1615	Light	Normal
3	1619	Hea∨y	Smashed
4	1304	Light	Normal
5	1602	Light	Normal
6	1713	Hea∨y	Smashed
7	1568	Light	Smashed
8	4007	Light	Smashed
9	3013	Hea∨y	Normal
10	1321	Light	Normal

tidyverse: %in%

- %in% is a useful tidyverse operator that checks whether an element belongs to a vector
- in your console: check if 3 is inside a vector containing 4, 6, 7, 9, 3
- each part of filter() is a condition being evaluated as TRUE or FALSE

> 3 %in% c(4, 6, 7, 9, 3) [1] TRUE

objectdata %>%

exercise: more constraints

- we want to evaluate only correct trials, use filter() to do this
- we want to retain the subject/participant identifier in the resulting dataframe: use select() to do this

objectdata %>%
<pre>filter(typeoftrial == "picture" & weight %in% c("Heavy", "Light")</pre>
<pre>shape %in% c("Normal", "Smashed") &</pre>
correct == TRUE) %
<pre>select(subject, rt, weight, shape, correct)</pre>

A tibble: 2,263 × 4

	subject	rt	weight	shape
	<db1></db1>	<chr></chr>	<chr></chr>	<chr></chr>
1	<u>77</u> 491	3256	Heavy	Smashed
2	<u>77</u> 491	1615	Light	Normal
3	<u>77</u> 491	1619	Hea∨y	Smashed
4	<u>77</u> 491	1304	Light	Normal
5	<u>77</u> 491	1602	Light	Normal
6	<u>77</u> 491	1713	Heavy	Smashed
7	<u>77</u> 491	1568	Light	Smashed
8	<u>77</u> 491	4007	Light	Smashed
9	<u>77</u> 491	3013	Hea∨y	Normal
10	<u>77</u> 491	1321	Light	Normal

storing filtered data

- we not only want to subset the data but also store it so that we can do more analyses on the data
- name the filtered data as condition_data
- this should create condition_data in the environment
- click and examine that data

<pre>condition_data = objectdata %>%</pre>				
<pre>filter(typeoftrial == "picture" & weight %in% c("Heavy", "Light") &</pre>				
<pre>shape %in% c("Normal", "Smashed") &</pre>				
correct == TRUE) $\%$				
<pre>select(subject, rt, weight, shape, correct)</pre>				

^	subject 🍦	rt [‡]	weight 🍦	shape 🍦	correct 🌼	
144	69266	864	Light	Smashed	TRUE	
145	69266	1285	Heavy	Normal	TRUE	
146	69266	942	Heavy	Normal	TRUE	
147	69266	1669	Light	Normal	TRUE	
148	69266	1745	Light	Smashed	TRUE	
149	69266	1106	Light	Smashed	TRUE	
150	69266	1077	Heavy	Normal	TRUE	
151	69266	932	Heavy	Normal	TRUE	
152	69266	908	Heavy	Smashed	TRUE	

tidyverse: summarize()

- summarize() calculates descriptive statistics for your data
- we can compute the mean reaction time across all trials and all participants for condition_data
- NAs are produced when the mean cannot be computed

condition_data %>%
 summarise(mean_rt = mean(rt))

```
> condition_data %>%
+ summarise(mean_rt = mean(rt))
# A tibble: 1 × 1
    mean_rt
        <dbl>
1        NA
Warning message:
There was 1 warning in `summarise()`.
i In argument: `mean_rt = mean(rt)`.
Caused by warning in `mean.default()`:
! argument is not numeric or logical: returning NA
```

tidyverse: mutate()

- mutate() allows you to create new columns in your dataframe or change/replace existing columns
- we can use mutate() to change the data type of important columns when we read in the object data
- re-run your chunk

objectdata = read_csv("objects.csv") %>%
mutate(rt = as.numeric(rt),
 weight = as.factor(weight),
 shape = as.factor(shape))

\$ rt	: num [1:34057] NA 11783 51986 21791 NA
<pre>\$ response</pre>	: chr [1:34057] NA "{\"ID\":\"60ad7bc194a8625071b
<pre>\$ Experiment</pre>	: logi [1:34057] NA NA NA NA NA NA
<pre>\$ stimulus</pre>	: chr [1:34057] NA NA "\n <p style='\"font-size:2</th'></p>
\$ List	: chr [1:34057] NA NA NA NA
<pre>\$ weight</pre>	: Factor w/ 4 levels "filler","Heavy",: NA NA N
\$ shape	: Factor w/ 4 levels "n","Normal","s",: NA NA N

> condition_data %>%

+ summarise(mean_rt = mean(rt))

A tibble: 1×1

mean_rt

<dbl>

1 <u>1</u>113.

tidyverse: more summarize()

- compute the standard deviation of reaction time
- store it all in a dataframe called object_agg

object_agg = condition_data %>%
 summarise(mean_rt = mean(rt),
 sd_rt = sd(rt))

tidyverse: group_by()

- group_by() allows you to group the data based on specific values within a column
- if we want to obtain reaction times for our conditions, which columns should we use to group the data?

tidyverse: group_by()

- modify object_agg
- group by weight and shape
- compute the mean and sd of reaction time
- are we in business??

Fleavy sentence Heavy sentence Light sentence Light sentence Light sentence Since Since

📄 first-R-notebook.Rmd 🗙			object_agg ×	condit		
↓ ↓ Filter						
^	weight 🍦	shape 🍦	mean_rt 🍦	sd_rt 🗘		
1	Heavy	Normal	1134.607	976.1069		
2	Heavy	Smashed	1150.814	1007.0356		
3	Light	Normal	1048.484	581.6215		
4	Light	Smashed	1117.298	644.8903		

we're in business!

- we can now plot the means using our favorite plotting function
- recall the grammar of graphics...what 3 things do we need?
- data?
- geom?
- mapping/aes?

plotting the means

- use ggplot() to plot the data
- notice the + sign, not %>% for plotting
- notice the fill is inside the aes() because it is a column from the data
- close...;

ggplot(data = object_agg) +
geom_col(mapping = aes(x = shape, y = mean_rt, fill = weight))

stacked vs. unstacked plots

- stacked bar charts display the grouped data on top of each other
- unstacked bar charts separate the bars
- use position = "dodge" inside geom_col(), after the mapping

prettify your plot!

- add a theme
- add a title
- change color palette
- if aesthetics focus on filling, then use scale_fill_ otherwise use scale_color_

interpreting the plot

HW: exercises

- what if I wanted RTs for each condition for each participant?
- before I analyzed the RTs, what if I wanted to first filter out participants who failed an attention check?

next class

• before class

- brainstorm: group project code (accuracy feedback)
- complete: formative assignment #1 resubmission
- prep: <u>Transform Tables</u> recipes
- during class
 - more data wrangling (for your experiments)