

CogLab: Manipulate Data

WEEK 9

Oct 27: research in psychology

President's Summer Research Symposium

Showcases student research at the College with over 150 posters and other interactive presentations from across the academic disciplines.

FRIDAY, OCTOBER 27, 2023 1:30 P.M.-3:30 P.M.

QUAD (rain location: Morrell Gym)

Come see the research going on at Bowdoin.

Talk to student researchers.

Get inspired!

Preview research abstracts in the Family Weekend guide found in the Bowdoin App **Bowdo.in/app**

or go to bowdo.in/summer-research

For more information contact Michael Danahy at mdanahy@bowdoin.edu. Made possible with support from the Office of the Dean for Academic Affairs Bowdoin

logistics: project

- next milestone #6: pre-registration (Nov 5)
- **before** pre-registration:
 - piloting your experiment (Jon + other groups, N = 7), pilot feedback sheet
 - send cognition.run link by Friday
 - finalizing analysis plan + sample size
- each group should come this week to office hours
 - Thursdays, 9-10 am
 - Thursdays, 4-5.30 pm
 - Fridays, 10-11 am
 - extra: Friday, 12 pm 1.30 pm
 - extra: Friday, 3.20 pm 5.30 pm

logistics: demographics

```
var language_question1 = {
   type: jsPsychHtmlButtonResponse,
   stimulus: 'Is English your first language?',
   choices: ["Yes", "No"],
   name: 'Language',
   data: {
       typeoftrial: "demo_language",
var no_lang_question1 = {
   type: jsPsychSurveyText,
   questions: [{prompt: "What is your first language?", required : true}]
var no_lang_question2 = {
   type: jsPsychSurveyText,
   questions: [{prompt: "At what age did you learn English?", required : true}]
var no_lang = {
   timeline: [no_lang_question1, no_lang_question2],
   conditional_function: function () {
       var last_trial_data = jsPsych.data.get().filter({typeoftrial: 'demo_language'}).last(1).values()[0];
       console.log("last_trial_data=", last_trial_data);
        if (last_trial_data.response == 1) {
           return true
           return false
var language = {
   timeline: [language_question1,no_lang]
```

logistics: demographics

- make sure the data is getting recorded correctly
- especially from survey-text questions
- data.response = data.response.Q0

logistics: formative assignment #2

- descriptive statistics and plotting in R
- due Oct 29 (first draft worth 2%, second worth 8%)

Nov 7: guest speaker

- Dr. Kyle Featherston
- Ph.D., Psychological and Brain Sciences
- Research Program Director, Columbia University School of Nursing
- available for one-on-one career meetings:
 - 9 am 10 am
 - 1 pm 3 pm
- sign up here

8	Sunday, October 22, 2023	Project Milestone #5 (Full Experiment) Due
9	Tuesday, October 24, 2023	W9: Manipulate Data
9	Thursday, October 26, 2023	W9 continued
9	Sunday, October 29, 2023	Formative Assignment (R Descriptive) Due
10	Tuesday, October 31, 2023	W10: Making Inferences
10	Thursday, November 2, 2023	W10 continued
10	Sunday, November 5, 2023	Project Milestone #6 (Pre-Registration) Due
11	Tuesday, November 7, 2023	Guest Session: Dr. Kyle Featherston
11	Thursday, November 9, 2023	Weeks 11-13: Data Collection
11	Sunday, November 12, 2023	Formative Assignment (R Inferential) Due
12	Tuesday, November 14, 2023	Data Collection continued
12	Thursday, November 16, 2023	Psychonomics Conference: NO CLASS
12	Sunday, November 19, 2023	Project Milestone #7 (Analyses) Due

recap: Oct 17/19, 2023

- what we covered:
 - R101, data analysis plan
 - visualizing data
- your to-do's were:
 - prep: Work with Data primer
 - try: HW, fix the data!
 - apply: Week 8 Quiz
 - apply: formative milestone # 1 resubmission
 - apply: project milestone 5 (full experiment)

HW: fixing accuracy

AB	AC	AD	AE	AF	AG	АН	AI	AJ
response	revised_response	sentence	novel1	novel2	novel3	correct	revised_correct	cue
sh it were easier to	o get a foobly mipp.	Sometimes I wis	foobly	mipp	NOT_FOUND			
cided I'd go looking	g for a foobly apple.	In the end, I deci	foobly	NOT_FOUND	NOT_FOUND			
et there told me the	ey saw a foobly app	The people I me	foobly	NOT_FOUND	NOT_FOUND			
I would like a dodi	sh horse better.	I am not sure if I	dodish	NOT_FOUND	NOT_FOUND			

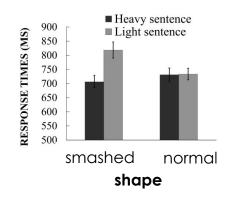
- go to <u>revised_class_data</u> on drive
- group task: fix the data!
 - Semantic Snakes: fix the attention check responses + accuracy
 - Berries: fix association responses, IDs 275998227-276772242
 - Nellaphen: fix association responses, IDs 823472278 988749039
- complete before Tuesday (Oct 24)

today's agenda

- tidyverse verbs
 - select()
 - filter()
 - mutate()
 - summarize()
 - group_by()

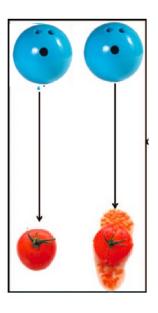
open your RStudio project

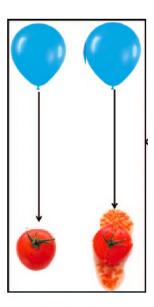
- open the project and your .Rmd file
- re-download the class_data.csv file
- run all chunks


an experiment

- I will show you a sentence
- then I will show you an image
- raise your dominant hand if the object shown was mentioned in the sentence
- raise your non dominant hand otherwise

you drop a bowling ball on a tomato

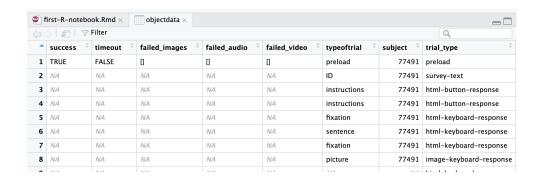

object state changes dataset



- task: object verification from sentences presented to participants
- research questions: do the events mentioned in the sentences influence response time?
- RT (bowling ball + squashed tomato) VS.
 RT (bowling ball + intact tomato)
- RT (balloon + squashed tomato) VS.
 RT (balloon + intact tomato)

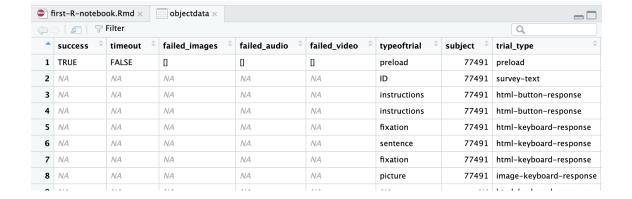
Dropping Bowling Balls on Tomatoes: Representations of Object State-Changes During Sentence Processing

> Oleksandr V. Horchak and Margarida Vaz Garrido Iscte-Instituto Universitário de Lisboa



review: importing new data

- create a new a # tidyverse
 verbs heading and code chunk
- download <u>objects.csv</u>
- import this data into your notebook and name it objectdata
- how many rows and columns?

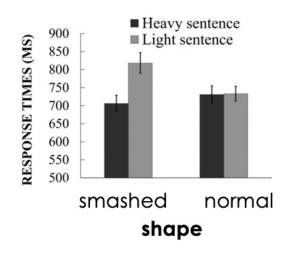

tidyverse verbs

```
```{r}
objectdata = read_csv("objects.csv")
'``
```



## tidyverse verbs

- often, your experiment data is not in analysis-ready format
- you may need to delete some rows, select some columns, arrange the data, etc.
- tidyverse verbs allow you to manipulate the dataframe and make it analysis and plottingfriendly




## tidyverse piping

- piping is a way to define a sequence of operations in R
- this is accomplished using %>%
- the idea is that you use the same data but perform multiple operations on it using the pipe
- we will use piping to combine different operations together

## tidyverse: select()

- select() allows you to retain only specific columns from your dataframe
- useful when your data contains too many unnecessary columns that are not relevant for analysis
- what columns might be important in this dataset?
- print the column names and let's make a list!



© first-R-notebook.Rmd × □ objectdata × □									
	⟨□□⟩   ⟨□⟩   ♥ Filter								
•	success <sup>‡</sup>	timeout ‡	failed_images <sup>‡</sup>	failed_audio <sup>‡</sup>	failed_video <sup>‡</sup>	typeoftrial <sup>‡</sup>	subject <sup>‡</sup>	trial_type	
1	TRUE	FALSE	0	0	0	preload	77491	preload	
2	NA	NA	NA	NA	NA	ID	77491	survey-text	
3	NA	NA	NA	NA	NA	instructions	77491	html-button-response	
4	NA	NA	NA	NA	NA	instructions	77491	html-button-response	
5	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response	
6	NA	NA	NA	NA	NA	sentence	77491	html-keyboard-response	
7	NA	NA	NA	NA	NA	fixation	77491	html-keyboard-response	
8	NA	NA	NA	NA	NA	picture	77491	image-keyboard-response	
^	414	414	414	414	A.1.4	414			

## tidyverse: select()

- logic of piping:
  - start with the dataset
  - add a pipe
  - specify an action
- select RT, weight, and shape from objectdata
- run the chunk
- what do you see?
- ALL trials are being included because select only picks the columns, not the rows

```
objectdata %>%
 select(rt, weight, shape)
A tibble: 34,057 \times 3
 weight
 shape
 <chr> <chr>
 <chr>
 NA
 2 11783 NA
 3 51986 NA
 4 21791 NA
 5 null NA
 6 4589
 practice n
 7 null
 NA
 8 6443 practice n
10 null NA
i 34,047 more rows
i Use `print(n = ...)` to see more rows
```

## tidyverse: filter()

- filter() allows you to retain only specific rows from your dataframe
- if we need only the picture trials, we can use filter to do this before we select our columns
- notice how we've used the pipe to continue our code
- run this chunk again!
- what do you notice now?

```
objectdata %>%
 filter(typeoftrial == "picture") %>%
 select(rt, weight, shape)
```

```
weight
 shape
 <chr>
 <chr> <chr>
1 6443
 practice n
2 6516
 practice s
 practice s
 2096
 practice s
 filler
 NA
 3256
 Smashed
 Heavy
 filler
 NA
8 1615
 Normal
 Light
 Smashed
 Heavy
LØ 1304
 Light
 Normal
```

## tidyverse: filter()

- the data is a lot better now but still contains filler and practice trials
- we could add an additional conditions in our filter statement that restrict the values of weight and shape
- the & operator combines different constraints we want to apply to the data

```
A tibble: 2,376 x 3
 weight shape
 <chr> <chr> <chr>
 1 3256
 Heavy Smashed
 2 1615
 Light Normal
 3 1619
 Heavy Smashed
 4 1304
 Light
 Normal
 5 1602
 Light Normal
 6 1713
 Heavy
 Smashed
 7 1568
 Light Smashed
 Light
 Smashed
 Heavy
 Normal
 Light
 Normal
```

#### tidyverse: %in%

- %in% is a useful tidyverse operator that checks whether an element belongs to a vector
- in your console: check if 3 is inside a vector containing 4, 6, 7, 9, 3
- each part of filter() is a condition being evaluated as TRUE or FALSE

```
> 3 %in% c(4, 6, 7, 9, 3)
[1] TRUE
```

#### exercise: more constraints

- we want to evaluate only correct trials, use filter() to do this
- we want to retain the subject/participant identifier in the resulting dataframe: use select() to do this

```
A tibble: 2.263 \times 4
 subject rt
 weight shape
 <dbl> <chr> <chr> <chr>
 77491 3256
 Heavy
 Smashed
 77491 1615
 Light
 Normal
 77491 1619
 Heavy
 Smashed
 77491 1304
 Light
 Normal
 77491 1602
 Light
 Normal
 77491 1713
 Heavy
 Smashed
 77491 1568
 Light
 Smashed
 77491 4007
 Smashed
 Light
 77491 3013
 Heavy
 Normal
 77491 1321
 Light
 Normal
```

#### storing filtered data

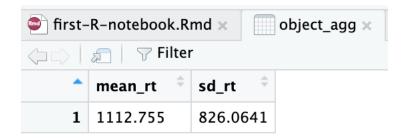
- we not only want to subset the data but also store it so that we can do more analyses on the data
- name the filtered data as condition\_data
- this should create condition\_data in the environment
- click and examine that data

	⟨□ □ □ □ □ □ □ Filter								
_	subject <sup>‡</sup>	rt <sup>‡</sup>	weight <sup>‡</sup>	shape <sup>‡</sup>	correct <sup>‡</sup>				
144	69266	864	Light	Smashed	TRUE				
145	69266	1285	Heavy	Normal	TRUE				
146	69266	942	Heavy	Normal	TRUE				
147	69266	1669	Light	Normal	TRUE				
148	69266	1745	Light	Smashed	TRUE				
149	69266	1106	Light	Smashed	TRUE				
150	69266	1077	Heavy	Normal	TRUE				
151	69266	932	Heavy	Normal	TRUE				
152	69266	908	Heavy	Smashed	TRUE				

## tidyverse: summarize()

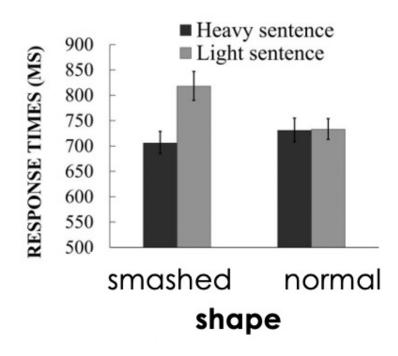
- summarize() calculates descriptive statistics for your data
- we can compute the mean reaction time across all trials and all participants for condition\_data
- NAs are produced when the mean cannot be computed

## tidyverse: mutate()


- mutate() allows you to create new columns in your dataframe or change/replace existing columns
- we can use mutate() to change the data type of important columns when we read in the object data
- re-run your chunk

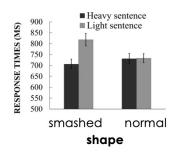
```
$ rt : num [1:34057] NA 11783 51986 21791 NA ...
$ response : chr [1:34057] NA "{\"ID\":\"60ad7bc194a8625071b
$ Experiment : logi [1:34057] NA NA NA NA NA NA ...
$ stimulus : chr [1:34057] NA NA "\n
```

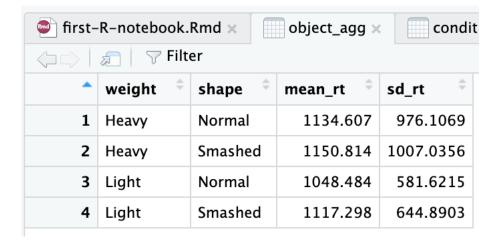
```
> condition_data %>%
+ summarise(mean_rt = mean(rt))
A tibble: 1 x 1
 mean_rt
 <dbl>
1 1113.
```


## tidyverse: more summarize()

- compute the standard deviation of reaction time
- store it all in a dataframe called object\_agg

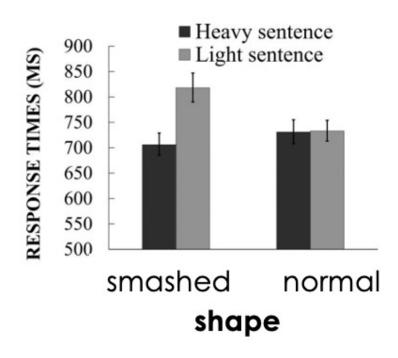



## tidyverse: group\_by()


- group\_by() allows you to group the data based on specific values within a column
- if we want to obtain reaction times for our conditions, which columns should we use to group the data?



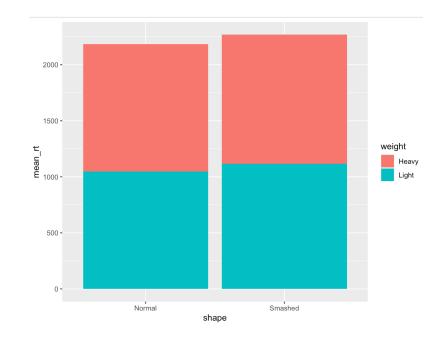
### tidyverse: group\_by()


- modify object\_agg
- group by weight and shape
- compute the mean and sd of reaction time
- are we in business??



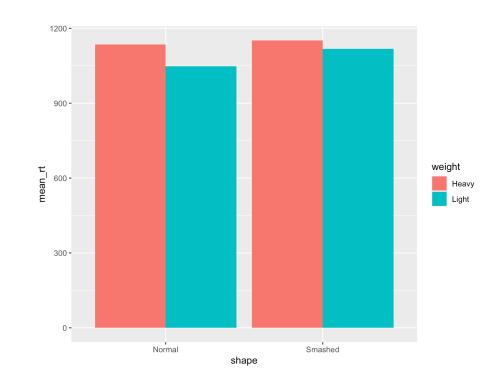


#### we're in business!


- we can now plot the means using our favorite plotting function
- recall the grammar of graphics...what 3 things do we need?
- data?
- geom?
- mapping/aes?

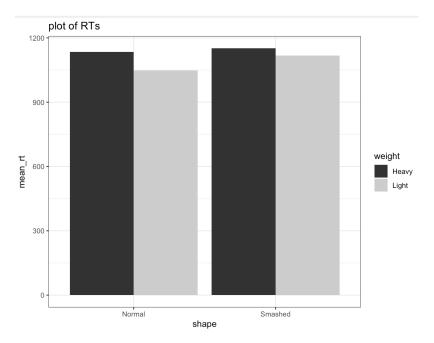


#### plotting the means

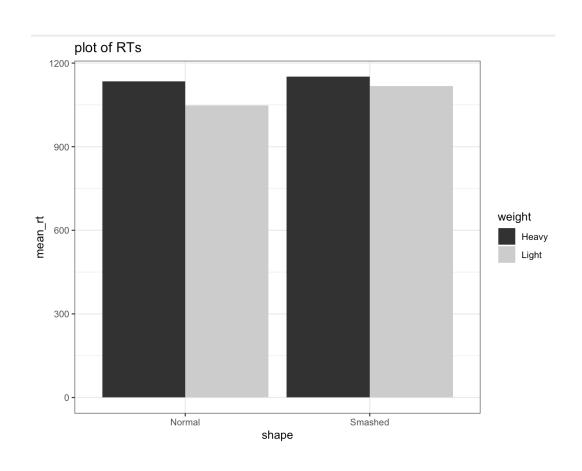

- use ggplot() to plot the data
- notice the + sign, not %>% for plotting
- notice the fill is inside the aes() because it is a column from the data
- close...?

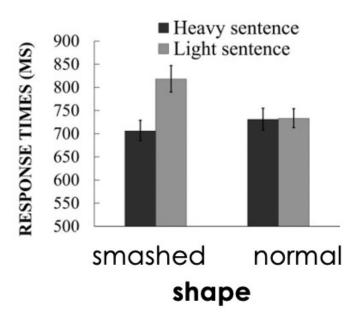
```
ggplot(data = object_agg) +
geom_col(mapping = aes(x = shape, y = mean_rt, fill = weight))
```




#### stacked vs. unstacked plots

- stacked bar charts display the grouped data on top of each other
- unstacked bar charts separate the bars
- use position = "dodge" inside geom\_col(), after the mapping





#### prettify your plot!

- add a theme
- add a title
- change color palette
- if aesthetics focus on filling, then use scale\_fill\_ otherwise use scale\_color\_



# interpreting the plot





#### HW: exercises

- what if I wanted RTs for each condition for each participant?
- before I analyzed the RTs, what if I wanted to first filter out participants who failed an attention check?

#### next class

- before class
  - schedule: group meeting
  - complete: data cleaning
  - prep: complete the <u>Tidy your Data</u> primer
- during class
  - more data wrangling (for your experiments)