Cognition

PSYC 2040

L11: Judgment and Decision-Making

logistics

- no monthly quiz \#3 (monthly quiz \#1 and \#2 worth 7.5 points)
- will post ungraded practice questions for cumulative final
- cumulative final worth 30 points
- 5 points (L11 + L12)
- 15 points (L7-L10)
- 15 points (L1-L6)

13	Tuesday: April 16, 2024	Monthly Quiz 2
13	Wednesday, April 17, 2024	L11: Judgment and Decision Making
13	Friday, April 19, 2024	L11 continued...
14	M: April 22, 2024	Research Summary [QALMRI] due
14	Wednesday, April 24, 2024	L12: Social Cognition
14	Friday, April 26, 2024	L12 continued...
15	Wednesday, May 1, 2024	L0-L12 review!
15	Friday, May 3, 2024	Final
16	Wednesday, May 8, 2024	Wrapping up!
16	M: May 13, 2024	Research Reflection due

logistics

Component	Total
Weekly_assignments	up to 30
Monthly_quizzes	15
Midterm assessment	20
$\underline{\text { Final assessment }}$	30
$\underline{\text { Research summaries }}$	5
Extra credit	5
Total	105

Letter grade	Points
A	$95-100+$
A-	$90-94.99$
B+	$87-89.99$
B	$83-86.99$
B-	$80-82.99$
C+	$77-79.99$
C	$73-77.99$
C-	$70-72.99$
D	$60-69.99$
F	fewerthan 60%

APA citations

三 Google Scholar

- Articles

Any time
Since 2024
Since 2023
Since 2020
Custom range...
savic co occurrence semantic
About 1,890 results (0.09 sec)

Exposure to co-occurrence regularities in language drives semantic integration of new words.
O Savic, LUnger, VM Sloutsky - Journal of Experimental, 2022 - psycnet.apa.org Human word learning is remarkable: We not only learn thousands of words but also form organized semantic networks in which words are interconnected according to meaningful links, St Save 29 Cite Cited by 5 Related articles All 13 versions \wp

MLA Savic, Olivera, Layla Unger, and Vladimir M. Sloutsky, "Exposure to co-occurrence regularities in language drives semantic integration of new words." Journal of Experimenta Psychology: Learning, Memory, and Cognition 48.7 (2022): 1064.

APA Savic, O., Unger, L., \& Sloutsky, V. M. (2022). Exposure to cooccurrence regularities in language drives semantic integration of new words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 1064.

Chicago Savic, Olivera, Layla Unger, and Vladimir M. Sloutsky. "Exposure to co-occurrence regularities in language drives semantic integration of new words." Journal of Experimental Psychology: Learning, Memory, and Cognition 48, no. 7 (2022): 1064.

Harvard Savic, O., Unger, L. and Sloutsky, V.M., 2022. Exposure to cooccurrence regularities in language drives semantic integration of new words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), p. 1064.

Vancouver Savic O, Unger L, Sloutsky VM. Exposure to co-occurrence regularities in language drives semantic integration of new words. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2022 Jul;48(7):1064.

questions in decision-making

- how do people make choices/decisions?
- what factors influence these decisions?

questions in decision-making

- organ donation
- end of life care

Percent patients choosing comfort-oriented goal of care

The White House

Office of the Press Secretary

Executive Order -- Using Behavioral Science Insights to Better Serve the American People

BETTER SERVE THE AMERICAN PEOPLE

A growing body of evidence demonstrates that behavioral science insights -- research findings from fields such as behavioral economics and psychology about how people make decisions and act on them -- can be used to design government policies to better serve the American people.

Where Federal policies have been designed to reflect behavioral science insights, they have substantially improved outcomes for the

two key ideas

rationality

- people use logic, reasoning, and utility maximizing

irrationality

- people are "approximately rational", prone to biases

choice

- act involving the selection of a choice object from a set of available objects
- choice objects can:
- have multiple attributes
- involve risky or uncertain outcomes

- involve outcomes distributed over time
- involve outcomes that influence others

choice $=$ preference satisfaction?

- question: how do people make choices, and what objects do they choose?
- preference satisfaction: people have stable preferences, they make choices by satisfying these preferences, and they choose the object they prefer the most

preferences

- attitudes towards choice objects (liking/disliking)
- represented using "preference relations":
- $x_{1}>x_{2}$ means x_{1} preferred over x_{2}
- $x_{1} \sim x_{2}$ means x_{1} and x_{2} are preferred equally (indifference)

preferences: properties/assumptions

- stability: preferences are not sensitive to "context" and are independent of various irrelevant situational factors such as how the choice is presented
- If $x_{1}>x_{2}$ in one context then $x_{1}>x_{2}$ in every other context
- transitivity: preferences have an ordering
- if we have $x_{1}>x_{2}$ and $x_{2}>x_{3}$ then we have $x_{1}>x_{3}$
- completeness: for any two objects either the decision maker likes one over the other or likes them both equally
- we have either $x_{1}>x_{2}$ or $x_{2}>x_{1}$ or $x_{2} \sim x_{1}$

choice $=$ preference satisfaction？

－choice set：$X=\left\{x_{1}, x_{2}, x_{3}, x_{4} \ldots\right\}$
－chosen option：$C(X) \in X$
－$C(X)=x_{1}$ or $C(X)=x_{2}$

$$
\mathrm{x}=\{\text { 娄 曾亚 }\}
$$

－if preferences are stable，transitive，and complete：
－for any choice set X the decision maker can rank the objects in X in order of preference

$$
c(X)=
$$

－for any choice set X the decision maker will choose the most preferred object

choice $=$ utility maximization?

- preferences have magnitude or strength
- the utility of an object is the strength of preference for that object so that:
- $x_{1}>x_{2}$ if and only if $U\left(x_{1}\right)>U\left(x_{2}\right)$
- $x_{1} \sim x_{2}$ if and only if $U\left(x_{1}\right)=U\left(x_{2}\right)$
- If preferences can be described by utilities:
- For any choice set X the decision maker can rank the objects in X in order of utility
- For any choice set X the decision maker will choose the object with the highest utility

testing preference satisfaction

- how can we test this?
- by giving people choices!!!!
- all we need is a single counterexample to falsify the theory of choice as preference satisfaction!

testing transitivity

let's say we have four objects, and we observe:

- $x_{1}>x_{2}$
- $x_{1}>x_{3}$
- $x_{4}>x_{1}$
- $x_{3}>x_{2}$
- $x_{4}>x_{2}$
- $x_{4}>x_{3}$

Is this decision maker transitive?

testing transitivity

let's say we have four objects, and we observe:

- $x_{1}>x_{2}$
- $x_{1}>x_{3}$
- $x_{4}>x_{1}$
- $x_{3}>x_{2}$
- $x_{4}>x_{2}$
- $x_{3}>x_{4}$

Is this decision maker transitive?

violations of transitivity

- Tversky finds that people systematically violate transitivity in a variety of experiments
- other examples:

Table 19.1
The Gambles Employed in Experiment I

Gamble	Probability of winning	Payoff (in S)
a	$7 / 24$	5.00
b	$8 / 24$	4.75
c	$9 / 24$	4.50
d	$10 / 24$	4.25
e	$11 / 24$	4.00

- semantic relationships
- non-linear configurations

		Gamble									
Subject	Gamble	a	b	c	d	e					
1	a	-	.75	.70	$.45^{2}$	$.15^{2}$					
	b		-	.85	.65	$.40^{2}$					
	c			-	.80	.60					
	d				-	.85					
	c					-					

stability and relativism

- you need to buy a new tablet and a wireless computer mouse, in preparation for the upcoming semester. You need them today and cannot order them online. Luckily there are two nearby stores that have the exact items you need in stock. However the prices in the stores are slightly different:
- Store 1: Tablet for \$450 and Mouse for \$20
- Store 2: Tablet for \$450 and Mouse for \$15
- You are at Store 1, and Store 2 is a 15 minute walk away. Will you go to Store 2?

stability and relativism

- Kahneman and Tversky randomly assigned participants to one of two conditions:
- large relative discount: Imagine that you are about to purchase a jacket for $\$ 125$ and a calculator for $\$ 15$. The calculator salesman informs you that the calculator you wish to buy is on sale for $\$ 10$ at another branch of the store, 20 minutes away. Would you make the trip to the other store?
- small relative discount: Imagine that you are about to purchase a jacket for \$15 and a calculator for $\$ 125$. The calculator salesman informs you that the calculator you wish to buy is on sale for $\$ 120$ at another branch of the store, 20 minutes away. Would you make the trip to the other store?

stability and relativism

- 68% of participants were willing to make an extra trip to save $\$ 5$ on $\$ 15$, but only 29% were willing to make this trip to save $\$ 5$ on $\$ 125$
- relative comparisons can influence choices even if all costs and benefits are held constant
- saving \$5 on \$20 feels better than saving \$5 on \$450)

groups for today

group 1:
- Alex
- Judith
- Paul
- Anushka
- Nicholas
- Emily
- Eoin
- Nate

group 3:
- Laila
- Amanda
- Jane
- Cole
- Emilia
- Muzi
- Piper
- May

group 1: write down a number

How much are you willing to pay for the following?

Dictionary
Year of publication: 1993
Number of entries: $\quad 10,000$
Any defects?
No, it's like new.

group 2: write down a number

How much are you willing to pay for the following?

	Dictionary
Year of publication:	1993 Number of entries: Any defects?
	Yes, the cover is torn; otherwise it's like
	new.

group 3: write down two numbers

How much are you willing to pay for the following?

	Dictionary A	Dictionary B
Year of publication:	1993	1993
Number of entries:	10,000	20,000
Any defects?	No, it's like new.	Yes, the cover is torn;
		otherwise it's like

stability violations

How much are you willing to pay for the following?

	Dictionary A
Year of publication:	1993
Number of entries:	10,000
Any defects?	No, it's like new.

- joint vs. separate evaluations

FIG. 1. Mean WTP values for Dictionary A and Dictionary B in Study 1. The numbers in parentheses indicate numbers of participants

How much are you willing to pay for the following?

Year of publication:
Number of entries: Any defects?

Dictionary B 1993 20,000 Yes, the cover is torn; otherwise it's like new.

How much are you willing to pay for the following?

	Dictionary A	Dictionary B
Year of publication:	1993	1993
Number of entries:	10,000	20,000
Any defects?	No, it's like new.	Yes, the cover is torn; otherwise it's like new.

stability violations: task framing

- Levin et al. asked subjects to build their own pizzas, with a fixed cost per ingredient. Participants were randomly assigned to one of two experimental conditions:

Frequency Distribution for USA -Building Up Condition

Frequency Distribution for USA -Scaling Down Condition

stability violations: summary

- relative comparisons
- joint vs. separate evaluations
- task and attribute framing

FIG. 1. Mean WTP values for Dictionary A and Dictionary B in Study 1. The numbers in parentheses indicate numbers of participants.

activity: will you choose the gamble?

- x_{1} : $\$ 110$ if a coin flips heads and -\$100 if tails (gamble)
- x_{2} : \$0 for certain (not a gamble)

choice: expected value maximization

- expected value maximization: people choose the gamble with the highest expected value
- a gamble x_{1} offers outcome x_{11} with probability p_{11}, outcome x_{12} with probability p_{12}, outcome x_{13} with probability p_{13}, and so on...
- $E V\left(x_{1}\right)=p_{11} \cdot x_{11}+p_{12} \cdot x_{12}+p_{13} \cdot x_{13}+\ldots$
- a gamble x_{1} offers outcome $x_{1 i}$ with probability $p_{1 i}$

$$
E V\left(x_{1}\right)=\sum x_{1 i} \cdot p_{1 i}
$$

choice: expected value maximization

- will you choose the gamble?
- x_{1} : \$110 if a coin flips heads and -\$100 if tails (gamble)
- x_{2} : \$0 for certain (not a gamble)
- what will an expected value maximizer do?
- $E V\left(x_{1}\right)=0.5 * 110+(0.5)(-100)=55-50=5$
- $E V\left(x_{2}\right)=0$
- if people made choices by maximizing expected value they would always choose the gamble over a certain payoff (no
 matter how large that payoff is!)

choice: expected utility theory

- expected utility theory: people have "utilities" for different wealth states, and choose the gamble that offers them the highest expected utility
- the average utility after playing the gamble for someone with initial wealth w

$$
E U\left(x_{1}\right)=p_{11} \cdot U\left(w+x_{11}\right)+p_{12} \cdot U\left(w+x_{12}\right) \ldots
$$

$$
E U\left(x_{1}\right)=\sum p_{1 i} \cdot U\left(w+x_{1 i}\right)
$$

violations: risk aversion vs. seeking

- expected utility theory suggests that people should always try to maximize their expected utility, but people do not always do so
- risk aversion vs. risk seeking vs. risk neutral
- inconsistent preferences

how do we make choices?

- not using stable and transitive preferences
- not by maximizing expected value
- not by maximizing expected utility

activity

- Option A: offers a guaranteed return of $\$ 1000$.
- Option B: a gamble with a 50% chance of winning $\$ 2000$ and a 50% chance of winning nothing.

prospect theory

- behavioral theory to capture how humans make risky choices
- behavioral utility function: people prefer more certain gains rather than the prospect of larger gains with more risk
- overweight small probabilities and underweight large probabilities

Psychological value

prospect theory: example

- Option A: offers a guaranteed return of $\$ 1000$.
- Option B is a gamble with a 50% chance of winning $\$ 2000$ and a 50% chance of winning nothing.

prospect theory: example

- expected value?
- $0.5(2000)+0.5(0)=1000$
- both options are the same for an expected value maximizer
- people are more risk averse to losses

Psychological value

prospect theory: example

- Option A offers a guaranteed loss of $\$ 1000$.
- Option B is a gamble with a 50% chance of losing $\$ 2000$ and a 50% chance of losing nothing.

prospect theory: example

- expected value?
- $0.5(-2000)+0.5(0)=-1000$ loss
- both options are the same for an expected value maximizer
- people perceive the gamble as a chance to avoid the guaranteed loss, even if it means taking on additional risk.

Psychological value

prospect theory: phases

editing phase

- your initial response, likely using heuristics and prone to biases

evaluation phase

- compute utility and proceed accordingly

next class

- before class:
- review: reading
- work on: QALMRIs
- next time:
- prospect theory + heuristics \& biases!
- social decision making / game theory

