Cognition

PSYC 2040

L12: Social Cognition

Part 2

upcoming review sessions

- Wednesday (in class)
- Wednesday (Prof. Kumar): 2 5 pm
- Thursday (Prof. Kumar): 10 4 pm
- poll for submitting questions

14	Wednesday, April 24, 2024	L12: Social Cognition
14	Friday, April 26, 2024	L12 continued
15	Wednesday, May 1, 2024	L0-L12 review!
15	Friday, May 3, 2024	Final
15 16	Friday, May 3, 2024 Wednesday, May 8, 2024	Final Wrapping up!

a game

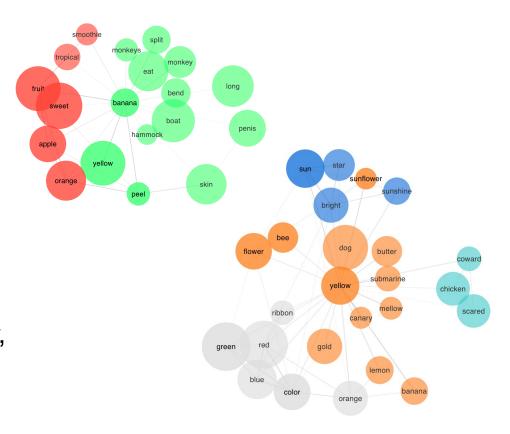
TIGER	EXAM	PINE	TRACE
HAND	STORM	SNAKE	ALARM
CLEVER	HOUSE	BIRTH	TEST
EXACT	FRESH	FLOUR	TOWER
PORK ASH		LION	HELL

ANIMAL

TIGER	EXAM	PINE	TRACE
HAND	STORM	SNAKE	ALARM
BEAR	HOUSE	BIRTH	TEST
EXACT	FRESH	FLOUR	TOWER
PORK	ASH	LION	HELL

ANIMAL

TIGER	EXAM	PINE	TRACE
HAND	STORM	SNAKE	ALARM
CLEVER	HOUSE	BIRTH	TEST
EXACT	FRESH	FLOUR	TOWER
PORK	ASH	LION	HELL


communication as search + inference

- communication has many constraints:
 - availability
 - task
 - context
- communication involves efficiently searching through what is available and coming up with the best possible utterance

TIGER	EXAM	PINE	TRACE
HAND	STORM	SNAKE	ALARM
CLEVER	HOUSE	BIRTH	TEST
EXACT	FRESH	FLOUR	TOWER
PORK ASH		LION	HELL

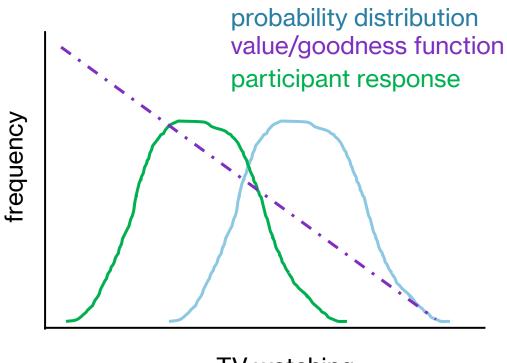
free associations

- word associations tend to resemble a "small-world" network (Steyvers & Tenenbaum, 2005; De Deyne & Storms, 2008)
 - highly clustered neighborhoods
 - short distances between concepts
- when a word comes to mind, it "activates" other words close to it ("spreading activation mechanism", Collins & Loftus, 1975)
- word associations are likely a combination of many factors: relatedness of concepts, frequency, imagery, emotion, etc.

what comes to mind?

- Bear et al., 2020 have recently investigated this question
- "what comes to mind" depends on:
 - what is most likely (probability)
 - what is generally good (value)

amount of TV watching in a day


what is likely (pr(3.38)ity)

2.87

what is good (1.63)

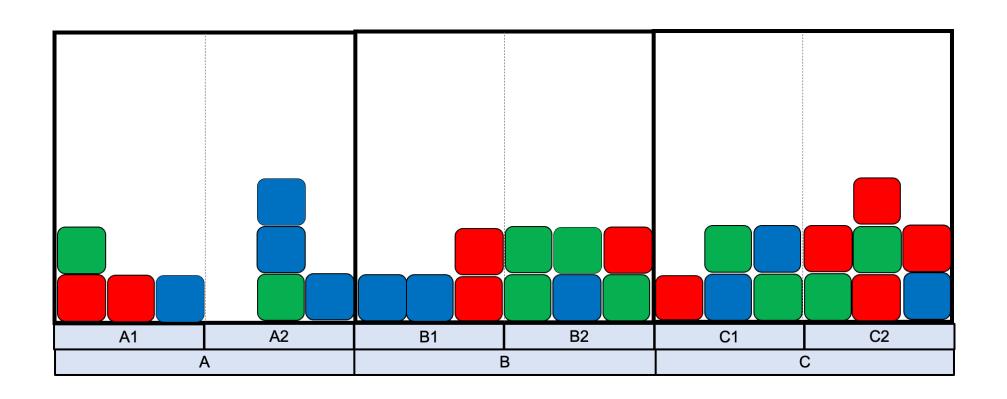
what comes to mind?

- Bear et al., 2020 have recently investigated this question
- "what comes to mind" depends on:
 - what is most likely (probability)
 - what is generally good (value)
- a multiplicative function

TV watching

what comes to mind?

- "what comes to mind" depends on:
 - what is most likely (probability)
 - what is generally good (value)
- what is most likely?
- what is good?
- biases + editing + utility!


TIGER	EXAM	PINE	TRACE
HAND	STORM	SNAKE	ALARM
BEAR	HOUSE	BIRTH	TEST
EXACT	FRESH	FLOUR	TOWER
PORK	ASH	LION	HELL

helping

- helping has inherently cognitive roots
- infants (and animals) appear to help without any extrinsic reward
- what cognitive mechanisms underlie wanting help or being helped?

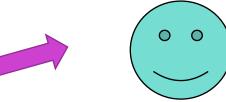
goal: move blue blocks to room C

goal: move blue blocks to room C

inference = recursive thinking

pragmatic listener

pragmatic speaker


	blue square	blue circle	green square
blue	0.5	0.33	0
circle	0	0.67	0
square	0.5	0	0.33
green	0	0	0.67

	blue square	blue circle	green square
blue	0.60	0.40	0
circle	0	1	0
square	0.60	0	0.40
green	0	0	1

literal listener

unc	d trut	h
e		
9	blue circle	green square
	1	0
	1	0

gro

	blue square	blue circle	green square
blue	1	1	0
circle	0	1	0
square	1	0	1
green	0	0	1

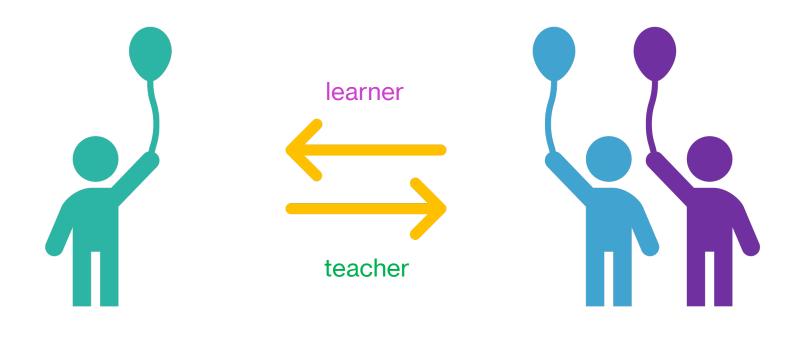
helping as inference

pragmatic architect

	goal 1	goal 2	goal 3
move 1	0	0	1
move 2	0.5	0.5	0
move 3	0	1	0
move 4	0.5	0	0.5

pragmatic helper

	goal 1	goal 2	goal 3
move 1	0	0	0.67
move 2	0.5	0.33	0
move 3	0	0.67	0
move 4	0.5	0	0.33

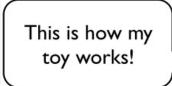


	goal 1	goal 2	goal 3
move 1	0	0	1
move 2	0.60	0.40	0
move 3	0	1	0
move 4	0.60	0	0.40

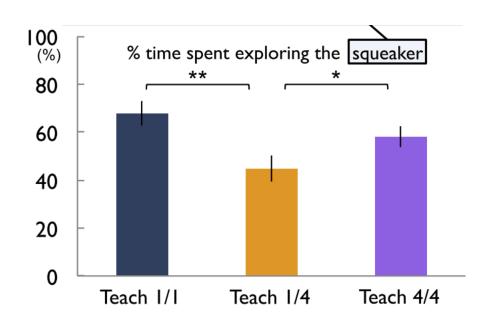
ground truth

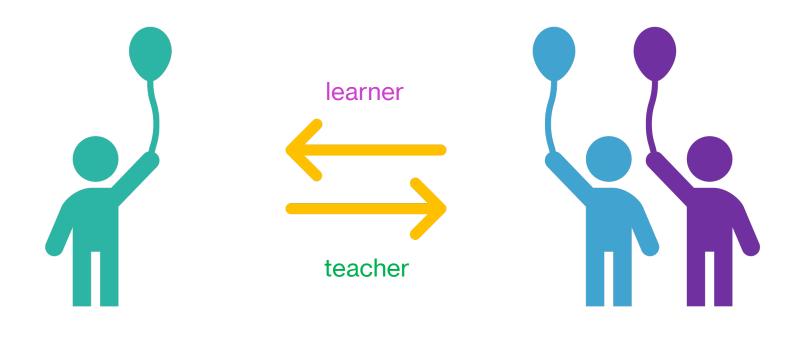
	goal 1	goal 2	goal 3
move 1	0	0	1
move 2	1	1	0
move 3	0	1	0
move 4	1	0	1

social learning as inference


child as learner: evaluating evidence

- Gweon et al. (2014) evaluated whether children (6-7yo) can evaluate and compensate for under-informative teaching
- teacher first provided under-informative or fully-informative demonstrations of a toy, and then demonstrate one function of a new toy
- recorded time spent exploring the squeaker part of the toy

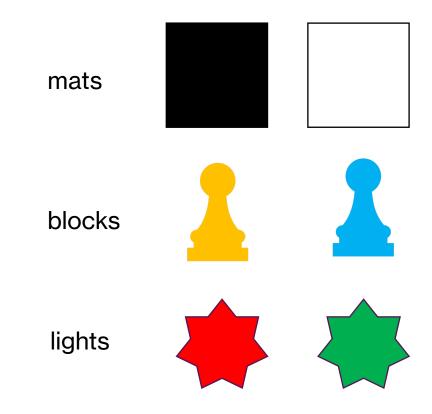


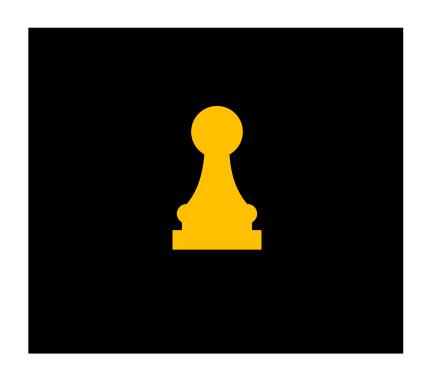


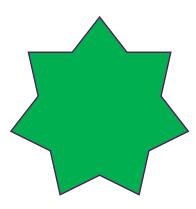
child as learner: evaluating evidence

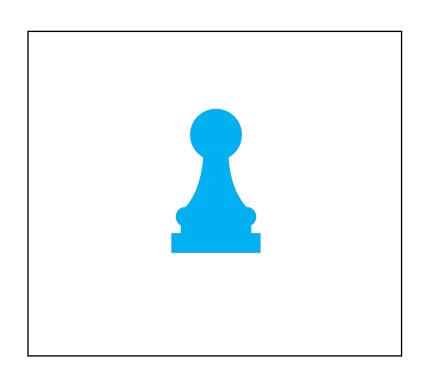
 children spent less time on the squeaker and more time on other parts when the teacher was underinformative, vs. when the teacher was fully-informative

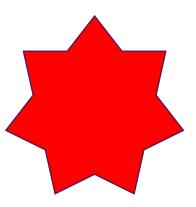
social learning as inference

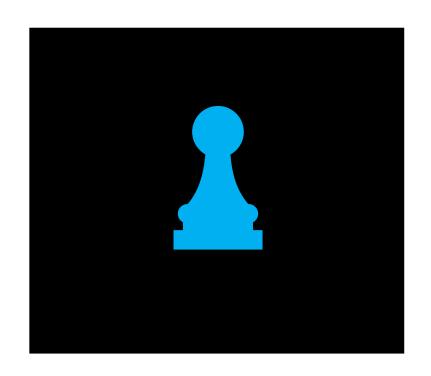

activity

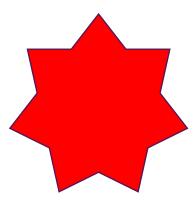

- half of the class will close their eyes (last names A-L)
- the other half will be explained something
- they will then try to communicate this to the "naïve" agents

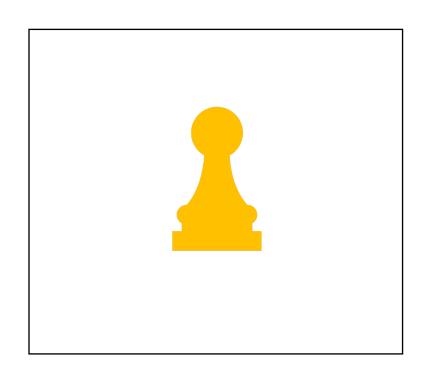

naive agents

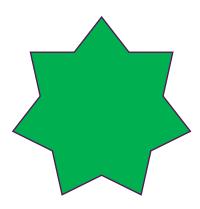

close your eyes!

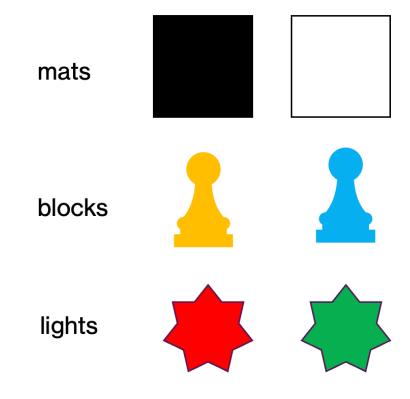

- I will perform some actions using mats, blocks, and lights
 - mats can be black or white
 - blocks can yellow or blue
 - lights can be red or green
- you have to figure out what turns the red and green lights on

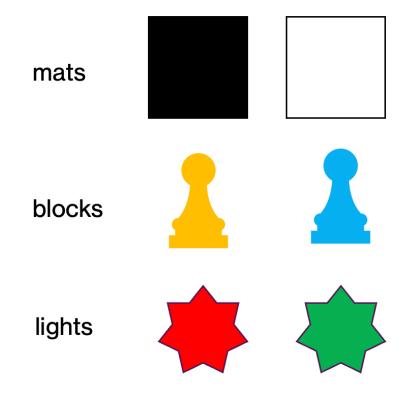








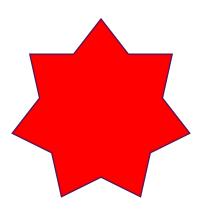



what is the rule?

- how do you turn on a RED light?
- how do you turn on a GREEN light?

the rule

- placing the blue block on a mat turns on the RED light
- placing the yellow block on a mat turns on the GREEN light
- mat color is irrelevant



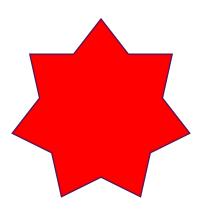
communicate: part 1

- volunteer
- your goal is to SHOW a RED light to the naïve agent

naive agents open your eyes!

the red light has turned on!

naive agents

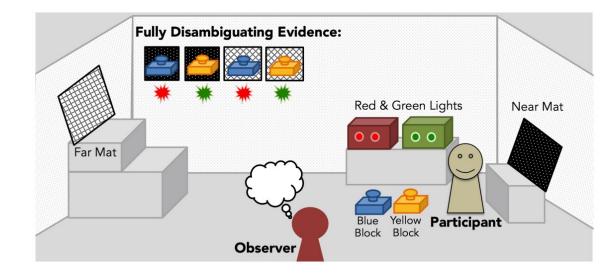

record what you have understood

communicate: part 2

- volunteer
- your goal is to make the the naïve agent UNDERSTAND how to turn on a RED light

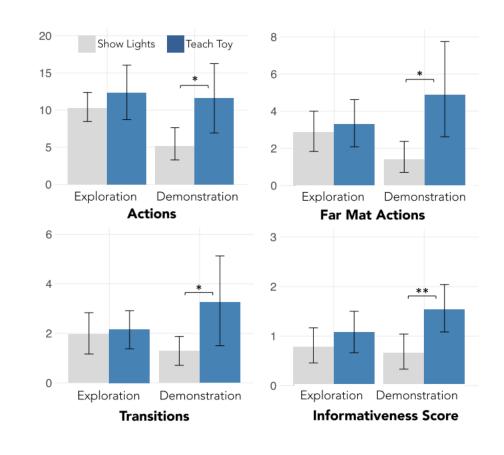
naive agents open your eyes!

the red light has turned on!

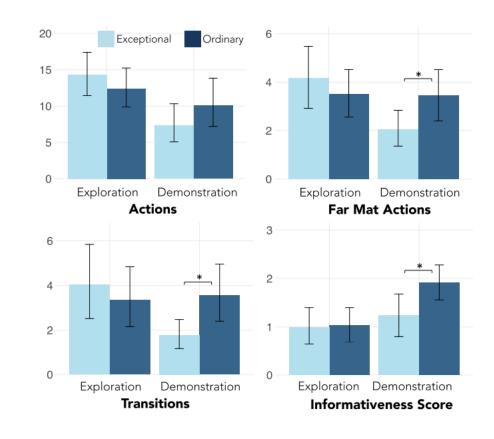


naive agents

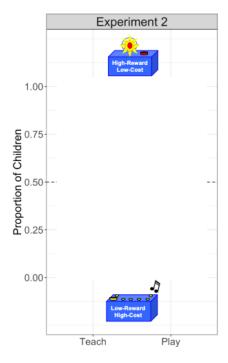
record what you have understood


child as teacher: inferring mental states

- Gweon and Schulz (2018) presented 4-to-7-year-olds with a causally ambiguous toy and then demonstrated the toy to a naïve agent
 - naive agent wants to see the effect generated (Show Lights) or understand how the toy works (Teach Toy)
- actions, far mat actions, transitions, and informativeness (first four actions) were measured

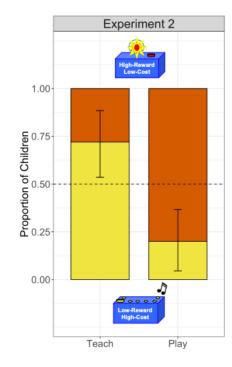

child as teacher: inferring mental states

- no differences during exploration phase
- children in the Teach Toy condition produced more actions, more far mat actions, more transitions compared to the Show Lights condition

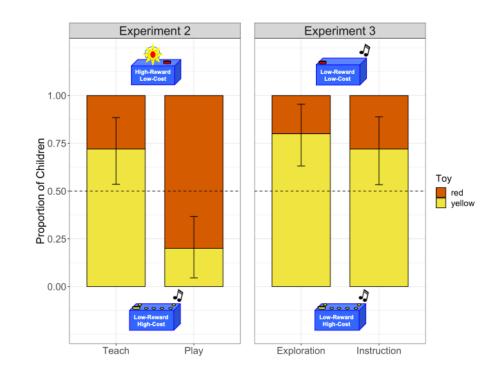

child as teacher: inferring mental states

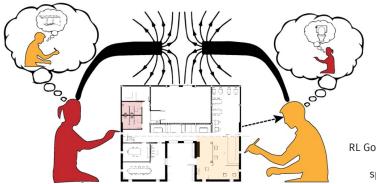
- experiment 2: children were asked to teach the observer (exceptional or ordinary)
- children did more actions and transitions for ordinary agents and were more informative early on for the ordinary agents
- inference: children can flexibly adjust evidence based on the observer's goals and competence

child as teacher: inferring utilities

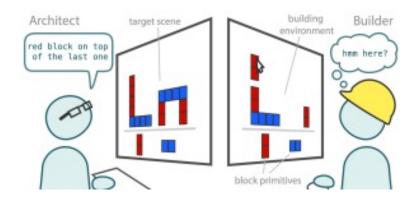

- Bridgers, Jara-Ettinger, and Gweon (2020) tested
 5–7-year-olds with toys
 - low/high cost
 - low/high reward
- experiment 2: choose a toy to teach or play

child as teacher: inferring utilities


- Bridgers, Jara-Ettinger, and Gweon (2020) tested
 5–7-year-olds with toys
 - low/high cost
 - low/high reward
- experiment 2: choose a toy to teach or play
- children chose low-reward/high-cost toys to teach and high-reward/low-cost toys to play with
- children prioritized the learner's utilities over their own when deciding what to teach


child as teacher: inferring utilities

- experiment 3: choose a toy to teach after exploration or instruction
- children chose low-reward/high-cost toys regardless of whether or not they explored the toys themselves or not
- children can infer the costs for others' learnings even in the absence of direct experience



social cognition

- researchers combine developmental + adult human studies with explicit mathematical models to account for a wide variety of cognitive phenomena
 - communication
 - helping
 - collaboration
 - cooperation
 - competition
 - teaching
 - ...

RL Goldstone, E Andrade-Lotero, RD Hawkins, ME Roberts (2023). The emergence of specialized roles within groups. *Topics in Cognitive Science.*

next class

- before class:
 - finish: L11 quiz/assignments
 - review: practice materials on Canvas
- during class:
 - L0-L12 review!
 - poll for submitting questions