Cognition

PSYC 2040
L6: Information Processing
Part 2

logistics: class survey (February)

- https://forms.gle/NyGRXCy6grEgiVPm9
- link also on Canvas (under class surveys)
- due Feb 27 (Tues midnight, so we can talk about it in class on Wed)
- 0.5 extra credit point that counts towards your final points/grade
- submit on Canvas (it's an "assignment" on Canvas)
- I value your feedback
- anonymous survey! please be honest and reflective
- you will get a code at the end of the survey (on the thank you screen)
- copy-paste this code on Canvas to get credit

logistics: midterm + monthly quiz

monthly quiz

- available from Friday (Feb 23) to Tuesday (Feb 27) midnight
- open-book, Canvas
- 1 hour time limit
review sessions
- Monday (Feb 26), 7-9 pm
- Thursday (Feb 29), 8-10 pm
- Kanbar 200
midterm
- March 1
- in-person
- Canvas quiz + handwritten short answer
- closed-book

recap

- what we covered:
- metaphors for cognition
- Donders' subtractive logic
- your to-dos were:
- do: PRP experiment
- explore: L6 assignments

today's agenda

- PRP effect
- Shannon's information theory
- the telephone metaphor for cognition
- from behaviorism to cognitivism

recap: Donders' subtractive logic

- time taken to respond should depend on number of processing stages required

SIMPLE REACTION TIME
RESPONSE
 to complete the task

- simple tasks have fewer stages and are therefore performed quickly
- complex tasks have more stages and therefore performed slower

recap: additive vs. interactive factors

- Sternberg (1969): binary classification RT studies
- additive effects suggest that two variables do not interactively influence the dependent variable
- Peterson et al. (1998): PET study, verb use task
- difference of brain images helped isolate specific areas for specific cognitive processing
- Jennings et al. (1997): PET study, semantic vs. letter task across three response modalities
- behavior showed no interactions, neural responses showed interaction between task and modality
- key takeaways:
- cognitive signatures $=$ neural signatures
- subtractive logic may have its limits (insertion assumption)

Probability of Responding "Old" to Old and New Items on the

Recognition Test for Each Response Mode

Item	Mouse-click		Spoken response		Silen	
	Semantic	Letter	Semantic	Letter	Sema	Lette
Old	0.90	0.52	0.87	0.52	0.79	0.54
New	0.27	0.30	0.22	0.24	0.28	0.2

Mouse-Click

Silent Thought

PRP effect

- the psychological refractory period (PRP) effect was documented by A.T. Welford
- the idea was that if two identical stimuli (S1 and S2) are presented with a short delay, then the time taken to respond to S 2 is longer (RT2 > RT1)

PRP effect: real-life examples

- groups of 2
- come up with a real-life example
- debrief

PRP effect: explanations

- properties of nerve fibers
- participant surprise: shorter delays produce more surprise which increases time
- limited-capacity single channel
- inspired by the assembly line metaphor and how a bottleneck might be created if stimuli were presented quickly one after the other
- also inspired by telecommunications...the idea of a "single channel"

the timeline so far

the timeline so far

origins: information theory

- Claude Shannon, American mathematician regarded the "father of information theory"
- also contributed to cryptanalysis during WWII
- the main purpose of information theory was to characterize communication systems, not understand cognition/psychology

information channels

- three main components
- sender
- channel
- receiver
- channels have capacities
- the total amount of information that can be transmitted
- how many calls can one telephone line/string support?
- how many stimuli can be processed within a given time period?

COMMUNICATION IN SHANNON'S INFORMATION THEORY

measuring channel capacity

- Shannon proposed a mathematical formula for quantifying the amount of information via H, or entropy, i.e., the amount of uncertainty/randomness/noise in a system of messages
- key idea: the more predictable something is, the less information it can transmit
- a book of all As provides no new information, i.e., its entropy (H) could be 0
- a 5-sentence paragraph with many new concepts and combinations of words has high entropy, i.e., more information to transmit

$$
H(X)=-1 * \sum_{\mathrm{i}=1}^{n} P\left(x_{i}\right) * \log _{2} P\left(x_{i}\right)
$$

H: entropy / information

$P\left(x_{i}\right)$: probability of occurrence for each event x_{i}
$\log _{2} P\left(x_{i}\right): \log$ of same probability
*: multiply

example 1: measuring channel capacity

- consider a fair coin, we want to calculate how much "information" it can transmit
- there are two events
- $x_{1}=$ heads and $x_{2}=$ tails
- $P\left(x_{1}\right)=P\left(x_{2}\right)=0.5$
- $\log \left(P\left(x_{1}\right)\right)=\log \left(P\left(x_{2}\right)\right)=-1$
- $H(X)=-1$ * $\operatorname{sum}(0.5(-1)+0.5(-1))=-1^{*}-1$
- $H(X)=1$
$H(X)=-1 * \sum_{\mathrm{i}=1}^{n} P\left(x_{i}\right) * \log _{2} P\left(x_{i}\right)$

H: entropy / information

$P\left(x_{i}\right)$: probability of occurrence for each event x_{i}
$\log _{2} P\left(x_{i}\right)$: log of same probability
*: multiply

example 2: measuring channel capacity

- now consider an unfair coin, we want to calculate how much "information" it can transmit
- there are two events
- $x_{1}=$ heads and $x_{2}=$ tails
- $P\left(x_{1}\right)=0.8, P\left(x_{2}\right)=0.2$
- $\log \left(P\left(x_{1}\right)\right)=-0.32, \log \left(P\left(x_{2}\right)\right)=-2.32$
- $H(X)=-1$ * sum (0.8(-.32) + 0.2(-2.32))
- $H(X)=-1^{*}-0.72=0.72$
- an unfair coin is less random than a fair coin and therefore has lower "information" to transmit, i.e., lower entropy

$$
H(X)=-1 * \sum_{\mathrm{i}=1}^{n} P\left(x_{i}\right) * \log _{2} P\left(x_{i}\right)
$$

H: entropy / information

$P\left(x_{i}\right)$: probability of occurrence for each event x_{i}
$\log _{2} P\left(x_{i}\right): \log$ of same probability
*: multiply

activity: measuring channel capacity

- calculate the entropy of a dice
- groups 1-3
- a fair dice
- all $P\left(x_{i}\right)=0.167$ for all numbers
- groups 4-6
- an unfair dice
- $P\left(x_{1}\right)=0.90$ for 1
- $P\left(x_{i}\right)=0.02$ for all other numbers
$H(X)=-1 * \sum_{i=1}^{n} P\left(x_{i}\right) * \log _{2} P\left(x_{i}\right)$

H: entropy / information

$P\left(x_{i}\right)$: probability of occurrence for each event x_{i}
$\log _{2} P\left(x_{i}\right): \log$ of same probability
*: multiply

bits of information

- H uses a base 2 logarithm to produce a number in the unit of bits
- bits refer to the total number of discrete events in a system of messages, it is a unit of information
- one bit has two states: 0 or 1
- it could be used to represent two events/states
- e.g., heads or tails, on or off
- 2 bits can be of the form $00,01,10,11$
- 4 events could be represented by 2 bits
- general formula

\# or BITS	COMBINATIONS		\# of EVENTS
10	0	1	2
2080	00 01	$\begin{aligned} & 310 \\ & 411 \end{aligned}$	4
3000000	$\begin{array}{ll} 000 \\ 001 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$		8

```
2^BITS = # OFUNIQUE EVENTS
    2n=2
    2^2}=(2\times2)=
    2n3}=(2\times2\times2):(4\times2)=
```

- number of events $=2^{\text {bits }}$

a communication game

- suppose you (sender) had to transmit the outcome of a dice roll to your friend (receiver)
- your signal could be one of 6 "events"
- how many bits? (\# events = $2^{\text {bits }}$)
- more than 2 and less than 3 bits
- recall that when you calculated this for a fair and unfair dice
- $\mathrm{H}=2.58$ (fair) and $\mathrm{H}=0.70$ (unfair)
- when predictability is low (fair dice), you need more bits
- when predictability is high (unfair dice), you need fewer bits

bit activity

- let's play a game in groups of 3 (knower, asker, recorder)
- earliest (knower) to latest (recorder) birthday in the year
- each group will be presented with a sheet of paper with 4 or 8 squares
- knower:
- one of the squares will have a star
- only you know the location of this star (go to this sheet, KNOWERS ONLY!)
- asker
- you will not know which of the squares contains the star
- you can ask N yes/no questions to determine where the star is
- recorder
- record how many yes/no questions were used to determine the star's location
- record max number of yes/no questions that would be required to CERTAINLY know the location

ПロП
is the star inside the yellow square?

Пロ®

we can achieve the answer by asking only 2 yes/no questions! this is called binary logic

bits activity: debrief

- the "squares" in this game could be considered "events" with equal probability
- the star is equally likely to be in any one of the squares
- 1 bit is equivalent to 1 yes/no question
- \#events = $2^{\# b i t s} ; 4$ squares need 2 bits
- bits represent a lower bound on how many "questions" need to be asked to fully reveal a message
- in communication, we want to know how many bits are needed to convey a particular message because channel capacity (how many bits can be used) is limited
- if you had a channel capacity of 2 bits, you could only ask 2 yes/no questions
- internet/broadband speeds are encoded in bits!
- "mbps" stands for megabits per second (1 million bits per second)
- this refers to the channel capacity, i.e., how many bits can be transmitted in one second
- bits in cognition: "information" contained in a set of stimuli

applying information theory to cognition

- researchers in the 1950s were inspired by the work in telecommunications and applied information theory to the study of cognition
- one domain where these ideas gained prominence was choice reaction time tasks or N-AFCs

choice RTs: set size effects

- one finding from the literature was that the choice reaction time increased as the number of alternatives increased
- RTs were faster in two vs. four-alternative tasks
- how many bits to represent two alternatives vs. four alternatives?
- but why? was it the number of alternatives (2 vs 4) or the amount of information (bits) carried within the alternatives (1 vs 2)?
- previous experiments had confounded the number of alternatives and amount of information

Hick Hyman's experiments

- experiment 1
- choice reaction time task
- 8 conditions corresponding to different number of alternatives (1 to 8)
- 1 alternative $=0$ bits, 2 alternatives $=1$ bit, etc.
- alternatives were confounded with bits
- experiment 2
- systematically varied the bits and alternatives
- how would you design such an experiment?

Condition	Number of alternatives	P (event)	bits $=-1$ * sum $\left(\mathrm{P}\left(\log _{2}(\mathrm{P})\right)\right)$
1	2	$9 / 10,1 / 10$	0.47
2	2	$8 / 10,2 / 10$	0.72
3	4	$13 / 16,1 / 16$	0.99
4	4	$4 / 8,3 / 8,1 / 8$	

Hick Hyman＇s experiment 2

TABLE 1
The Eight Conditions for Experiment II and the Corresponding Amounts of

Information in Bits per Stimulus
Presentation

Cond．	Number of Alter－ natıves	Probability Occurrence	Log：1／p	Av． Amount of Infor－ Cond．	
1	$2\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	$9 / 10$ $1 / 10$	$\begin{aligned} & 0.15 \\ & 3.32 \end{aligned}$	0.47	SAME \＃OF ALTERNATIVES 2
2	$2\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	$8 / 10$ $2 / 10$	$\begin{aligned} & 0.32 \\ & 2.32 \\ & \hline \end{aligned}$	0.72 ～	DIFFERENT AMOUNT OF BITS
3	4\｛ $\frac{1}{3}$	$\begin{array}{r} 13 / 16 \\ 1 / 16 \\ \hline \end{array}$	$\begin{array}{r} 0.30 \\ 4.00 \\ \hline \end{array}$	0.99 －	
4	$6\left\{\begin{array}{l}1 \\ \hline\end{array}\right.$	$15 / 20$ $1 / 20$	0.42 4.32	1.39	PREDICTION：
5	$4\left\{\begin{array}{l}1 \\ \frac{1}{2}\end{array}\right.$	$1 / 8$ $2 / 8$ $1 / 8$ $1 / 8$	1.00 2.00 3.00	1.75 年	REASTION TIME WILL 个
6	$6\left\{\begin{array}{l}1 \\ 5\end{array}\right.$	$5 / 10$ $1 / 10$	1.00 3.32	2.16	AS BITS 个
7	$8\left\{\begin{array}{l}1 \\ 1 \\ 6\end{array}\right.$	$8 / 16$ $2 / 16$ $1 / 16$	1.00 1.00 3.00 4.00		NOT AS \＃OF ALTERNATIVES \uparrow
8	$8\left\{\begin{array}{l}2 \\ 2 \\ 4\end{array}\right.$	$1 / 16$ $2 / 16$ $1 / 16$	$\begin{aligned} & 2.00 \\ & 3.00 \\ & 4.00 \end{aligned}$	2.75	

Hick Hyman's findings: explanations

- match to template hypothesis
- individuals had "mental templates" of each alternative and were serially comparing the presented stimulus to the templates
- could not account for the bits/uncertainty of alternatives
- binary logic hypothesis
- dividing the set of options by half each time
- popular way to sort numbers in computers (binary sort)
- repetition priming: potential confound
- fewer alternatives meant more repetitions

Hick Hyman's findings: broader implications

- debates about interpretation
- what was the mechanism of how information was processed? Information theory was limited to a measure and did not come with a theory or mechanism
- violations: practice, set size, etc.
- problematic for behaviorism
- participants were not simply responding to the stimulus but also thinking about what else could have been presented, i.e., mental operations
- people started recognizing the value of understanding cognition
- also highlighted the parallel nature of mental processing
- moving to newer metaphors
- cognition = computer (Alan Turing \& others)

big takeaways

- the study of cognition has moved from introspectionism to associationism to behaviorism to "cognitivism"
- cognition was influenced by world events
- Donders' processing stages are an example of the assembly line metaphor, inspired from the industrial revolution
- Shannon's information theory explored the telephone metaphor via the Hick Hyman law for choice reaction times
- 1940-50s onwards was an active period where behaviorism was powerful over time, the value of exploring internal mental operations was recognized

next class

- before class:
- finish: L6 quiz + writing assignments
- complete: monthly quiz
- review: practice assessment 1
- fill out: feedback survey
- during class:
- review LO-L6, bring questions!

