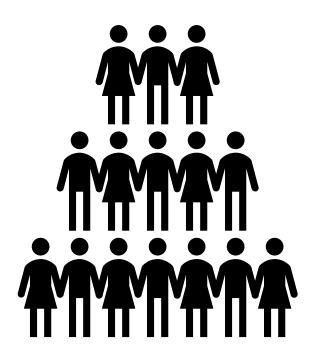
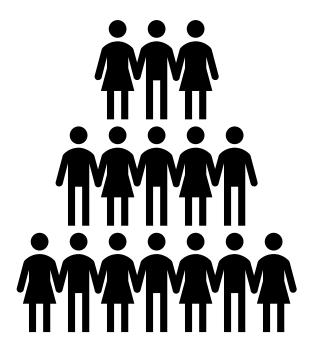
Cognition


PSYC 2040

W12: Social Cognition

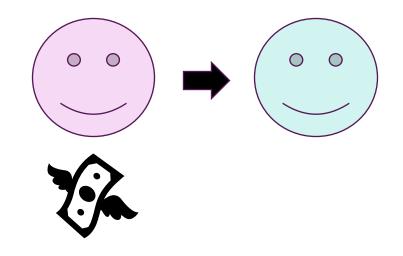
Part 1

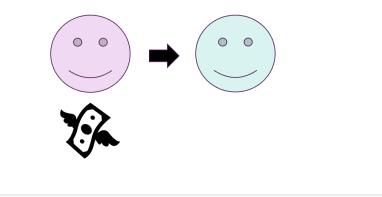

today's agenda

- social preferences
- social learning
- social inference

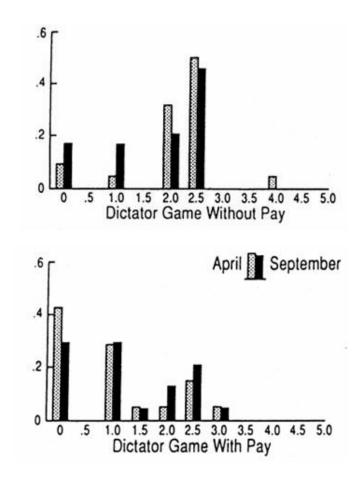
key questions in social cognition

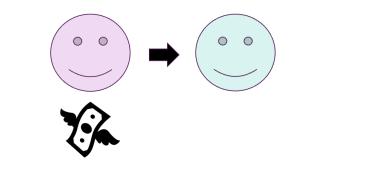
- social cognition is a field that studies how people process, store, and retrieve information in social contexts
- many questions:
 - how do we collaborate/compete/cooperate?
 - how do we learn from others?
 - how do we interpret communicative signals?
 - how do we teach?




social preferences

- social choice = choice between objects with rewards distributed across people
 - altruism
 - cooperation
 - trust
 - competition
- typically studied through "games" with monetary payoffs




- proposers are given a certain amount of money and asked to divide it between themselves and a recipient
- proposers can give any amount (including nothing) without repercussions
- "narrow selfishness" theory: people maximize their own payoffs

- Forsythe et al. 1994
- participants were randomly assigned to the role of dictator or recipient, and each dictator was anonymously matched with a recipient
- dictators had \$5 to divide between themselves and the recipient

 List and Cherry: proposers had \$20 or \$100 to divide

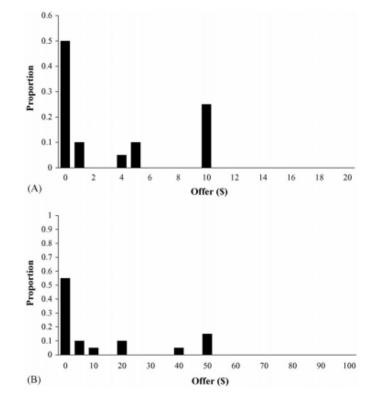
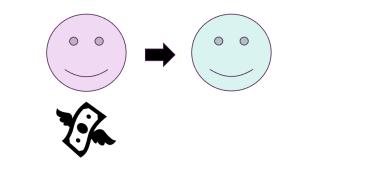
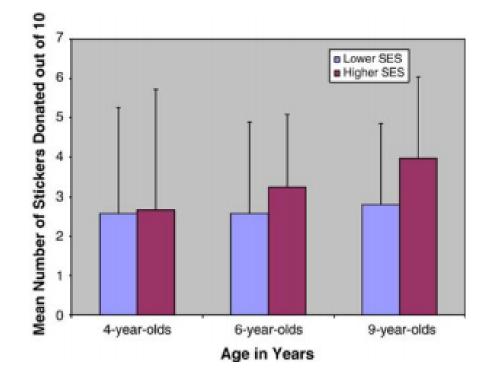
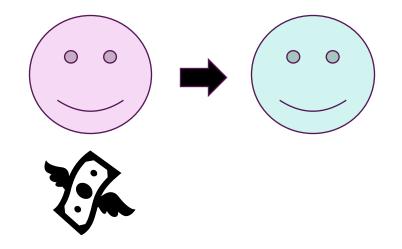
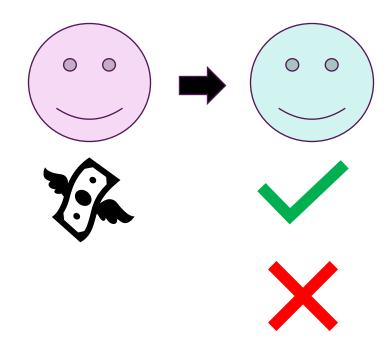



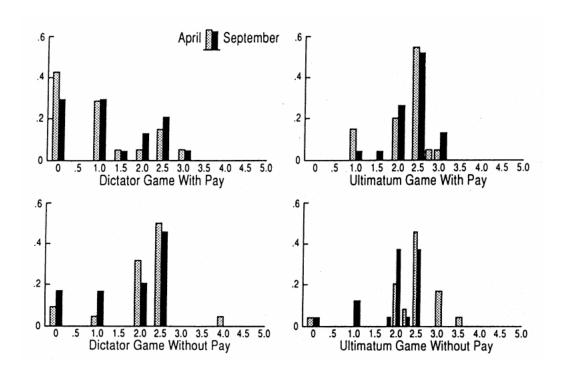
Fig. 1. (A) Experiment B\$20 (dictator baseline with unearned \$20). (B) Experiment B\$100 (dictator baseline with unearned \$100).

 Benenson et al. ran this game with children and with stickers instead of money


Fig. 1. The mean number (and standard deviation) of stickers donated to another classmate, by age level and SES, for the complete sample.

- broad finding: people typically give away some amount of money
- is this consistent with the "narrow selfishness" account?


ultimatum game

- proposers are given a certain amount of money and asked to divide it between themselves and a recipient
- the recipient can choose to reject the offer in which case neither the proposer nor the recipient get anything
- what would narrow selfishness predict?

ultimatum game

 broad finding: proposers often send high amounts, and recipients often reject low amounts

https://youtu.be/meiU6TxysCg?feature=shared&t=84

inequality aversion

- people assign negative utility to inequality, and proposers and recipients take this into account when making social decisions
- BUT it assumes stable preferences and ignores context
- decisions in social games also depend upon:
 - anonymity
 - quiet exits
 - effort
 - giving vs. taking
 -

Trust game

- discuss your general impressions after playing the game
- what behaviors are highlighted by the game as being cooperative?
- what other factors may influence how people behave in social situations?

Trust game

Game theory has shown us the three things we need for the evolution of trust:

1. REPEAT INTERACTIONS

Trust keeps a relationship going, but you need the knowledge of possible future repeat interactions *before* trust can evolve.

2. POSSIBLE WIN-WINS

You must be playing a non-zero-sum game, a game where it's at least possible that *both* players can be better off -- a win-win.

3. LOW MISCOMMUNICATION

If the level of miscommunication is *too* high, trust breaks down. But when there's a little bit of miscommunication, it pays to be *more* forgiving.

social learning

- social learning = learning from others
- humans appear to have harnessed social learning for complex purposes, e.g., developing and managing systems and institutions
- other animals also do some of this
- *how* do we learn from others?

Of chimps and children

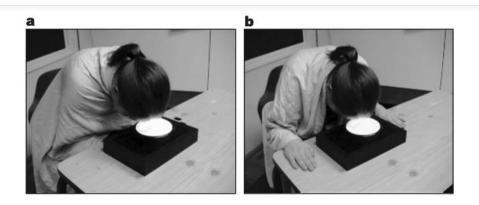
Clever crows and cheeky keas

mechanisms: imitation

 imitation, or copying others, is considered a fundamental mechanism for social transmission

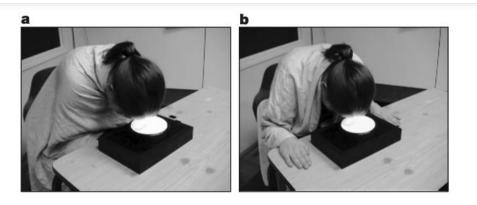
faithful imitation

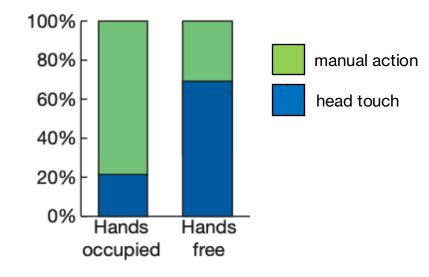
- Meltzoff (1988) tested 14-month-old infants
- first session, three conditions:
 - imitation: performed a target action (e.g., head touch)
 - baseline control: no exposure to the toys or actions
 - why?
 - manipulation control: other non-target actions
 - why?
- second session: 1 week delay
 - 20 seconds to play with six objects
- infants in the imitation condition produced more target behaviors than baseline or manipulation control conditions



Proportion of Subjects Producing Each Target Act as a Function of the Test Condition

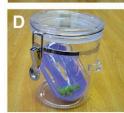
	Test cond	Test condition			
	Baseline	Adult-manipulation	Imitation		
Target act	(n = 12)	(n = 12)	(n = 12)		
Head touching	.000	.000	.667		
Object pulling	.167	.250	.833		
Button pushing	.667	.750	.833		
Egg shaking	.083	.083	.250		
Hinge folding	.333	.417	.750		
Bear dancing	.000	.167	.083		
М	.208	.278	.569		


rational imitation

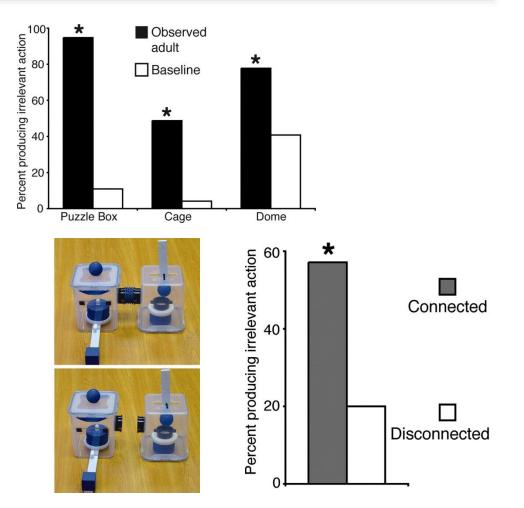

- Gergely, Bekkering and Király (2002) modified the original Meltzoff study
 - hands-free condition
 - hands-occupied condition
- logic?

rational imitation

- infants imitated the head touch in the hands-free condition, but to a much lesser degree in the hands-occupied condition
- inference: infants were rationalizing whether or not the head touch was necessary to turn on the light: a selective, inferential process


overimitation

- Lyons, Young, and Keil (2007) tested 3-5-year-olds on a set of relevant (necessary) and irrelevant (unnecessary) actions that led to opening a box
- children were trained to distinguish between relevant and irrelevant actions using familiar objects
- children were then tested on novel objects



overimitation: test

overimitation

- children repeated the irrelevant actions for all objects, despite training
- follow-ups:
 - took away the pressure of test: same pattern
 - explicitly instructed to avoid irrelevant actions: same pattern
 - violate causal connection: overimitation more in the connected igloo compared to the disconnected igloo
- inference: overimitation is driven by causal reasoning and not simply social motivation or curiosity

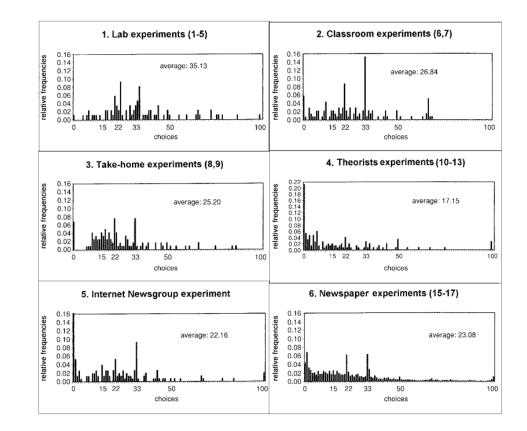
mechanisms: inference

- a more recent theory frames social learning as inferential reasoning
- key idea: humans learn by drawing inferences from observation and interaction with others
- this is not easy!

activity

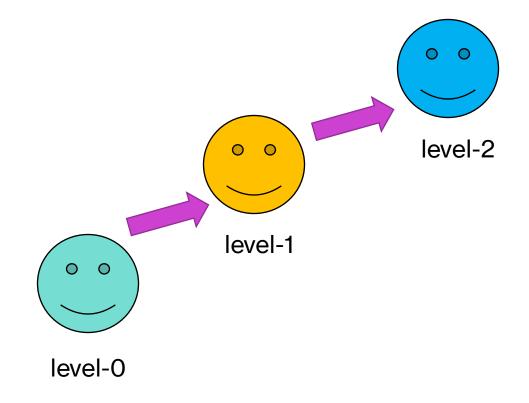
https://i3n1xnph9k.cognition.run

guess 2/3 the average


• how did you pick the number?

strategic reasoning

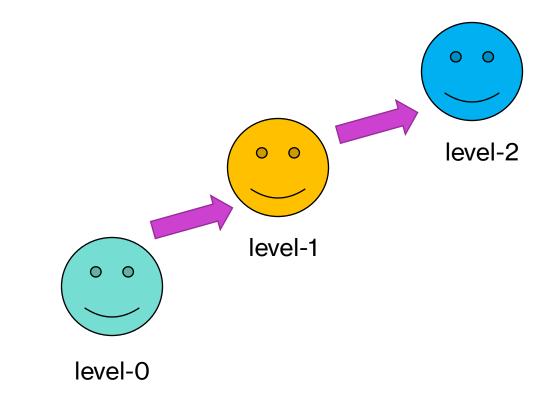
- the consequences for individuals often depend on each other's choices, and they have to reason through what others will do in order to decide what they should do
- Nash Theory assumes that everyone is strategically rational, that is, they can reason through what others will do and they always best respond to this


strategic reasoning

- Bosch-Domenech et al. studied Nash predictions in the Guess 2/3 the Average game
- Nash theory predicts guess of 0

level-k reasoning

- people can vary in terms of their strategic sophistication
 - level-0: completely random
 - level-1: believes that other people are level-0 and best responds to this
 - level-2: believes that other people are level-1 and best responds to this
 - ...
 - level-∞ decision maker

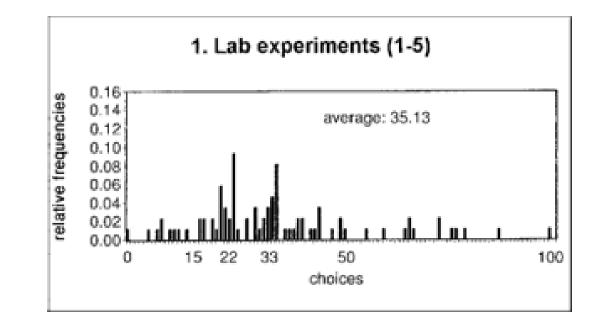


level-k reasoning

- level-0: random (average = 50)
- level-1: choose 33 (2/3rd of 50)
- level-2: choose 22 (2/3rd of 33)
- ...

• ...

- level-∞: choose 0
- ~21 k-levels to reach 0, the Nash equilibrium


level-k reasoning

- level-0: random (average = 50)
- level-1: choose 33 (2/3rd of 50)
- level-2: choose 22 (2/3rd of 33)
- ...

...

۲

- level-∞: choose 0
- ~21 k-levels to reach 0, the Nash equilibrium

pragmatic inference

- pragmatic inference: what a speaker <u>did not say</u> conveys as much information as what they did say
- how do we design an "agent" that mimics this behavior?

modeling inference

	blue square	blue circle	green square
blue	1	1	0
circle	0	1	0
square	1	0	1
green	0	0	1

ground truth records whether a label refers to an object or not

level-0 listener choices

	blue square	blue circle	green square
blue	0.5	0.5	0
circle	0	1	0
square	0.5	0	0.5
green	0	0	1

level-0 listener uses ground truth to make decisions about objects using a given label by scaling for each label

level-O listener probabilities

	blue square	blue circle	green square
blue	0.5	0.5	0
circle	0	1	0
square	0.5	0	0.5
green	0	0	1

level-0 listener uses ground truth to make decisions about objects using a given label

level-1 speaker choices

	blue square	blue circle	green square
blue	0.5	0.5	0
circle	0	1	0
square	0.5	0	0.5
green	0	0	1

level-1 speaker uses level-0 listener to assess the value of different labels given a target object

level-1 speaker probabilities

	blue square	blue circle	green square
blue	0.5	0.5	0
circle	0	1	0
square	0.5	0	0.5
green	0	0	1

level-1 speaker uses level-0 listener to assess the value of different labels given a target object

level-1 speaker probabilities

	blue square	blue circle	green square
blue	0.5	0.33	0
circle	0	0.67	0
square	0.5	0	0.33
green	0	0	0.67

level-1 speaker uses level-0 listener to assess the value of different labels given a target object

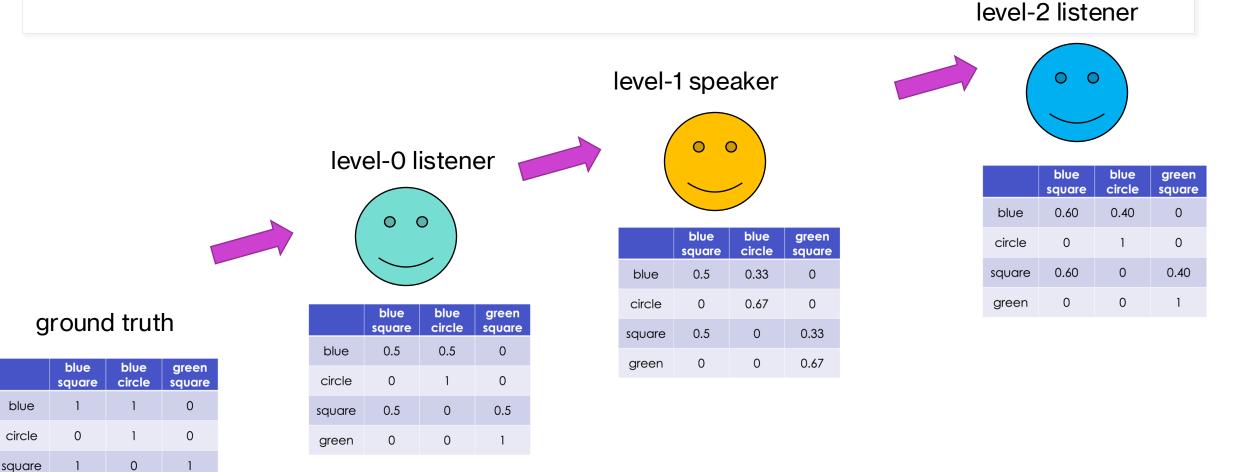
level-2 listener choices

	blue square	blue circle	green square	
blue	0.5	0.33	0	
circle	0	0.67	0	level-2 listener uses level-1 speaker to assess the most
square	0.5	0	0.33	likely object given a label
green	0	0	0.67	

level-2 listener probabilities

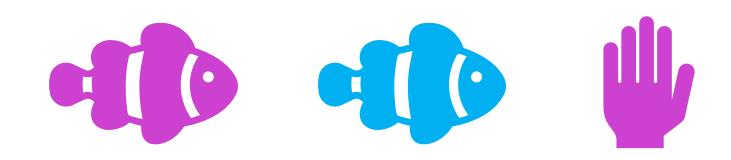
		blue square	blue circle	green square	
L	blue	0.60	0.40	0	
	circle	0	1	0	level-2 l uses level- to assess
	square	0.60	0	0.40	likely obje lab
	green	0	0	1	

stener speaker the most ct given a əl


inference = recursive thinking

0

green


0

1

Frank and Goodman (2012)

inference activity

inference activity

- if I said "pink" which object would a level-0 listener think I am referring to?
- what about a level-2 listener?

	pink fish	blue fish	pink glove
pink			
fish			
blue			
glove			

exit ticket + next class

social cognition contd.

Here are the to-do's for the week:

- Week 12 Exit Ticket (due Thursday)
- Week 12 Quiz (due Sunday)
- Post any lingering questions <u>here</u>
- Extra credit opportunities:
 - Submit Exra Credit Questions (1 point for 8 submissions)
 - Submit Optional Meme Submission (1 point for winners!)

Before Tuesday

• <u>Complete W12 Activity 1</u>

Before Thursday

• <u>Complete W12 Activity 2</u>

After Thursday

• See the <u>Apply</u> section

