Cognition

PSYC 2040

L12: Social Cognition

Part 2

social inference

- revisiting simple reference games
- inferences during communication
- inferences during helping
- inferences during learning and teaching

inference = recursive thinking

0

green

0

1

inference activity

inference activity

- if I said "pink" which object would a level-0 listener think I am referring to?
- what about a level-2 listener?

	pink fish	blue fish	pink glove
pink			
fish			
blue			
glove			

ground truth

	pink fish	blue fish	pink glove
pink	1	0	1
fish	1	1	0
blue	0	1	0
glove	0	0	1

level-O listener

	pink fish	blue fish	pink glove
pink	0.5	0	0.5
fish	0.5	0.5	0
blue	0	1	0
glove	0	0	1

level-1 speaker

	pink fish	blue fish	pink glove
pink	0.5	0	0.33
fish	0.5	0.33	0
blue	0	0.67	0
glove	0	0	0.67

level-2 listener

	pink fish	blue fish	pink glove
pink	0.60	0	0.40
fish	0.60	0.40	0
blue	0	1	0
glove	0	0	1

communication as search and inference

 communication requires rapid access to concepts from the lexicon
 + assessing which words/utterances would be most useful

associative reference games: Connector

- a two-player cooperative language game based on Codenames
 - speaker: one-word clue
 - guesser: two words
- how do people search through their semantic memory to come up with clues and guesses?

associative reference games: Connector

- use word representations from different language models to approximate semantic memory
 - free association networks
 - language models (word2vec-type)
- each word is represented as a "vector" in a multidimensional space
- distances between words can then be estimated via cosine similarity

predicting speaker responses

- for each word-pair, compute nearest neighbors to the two target words for all models
- compare the words predicted by semantic models to speaker's responses in the game
- free association networks outperformed language models

predicting guesser responses

- compute nearest two words on the board from the given clue within each semantic model
- evaluate model accuracy in predicting Guesser responses in the game
- associative networks and language models both predicted guesser responses equally well

e	I		I	
Word pair	Clue	Guesser response	Undirected prediction	Word2vec prediction
lion-tiger	cat	lion-tiger	lion, tiger	snake, tiger
astronaut- near	space	astronaut -sky	astronaut-sky	astronaut- sky
Semantic Model				

cognitive processes

Kumar and Hawkins (2025; JEP: General)

cognitive processes

• speaker selection = utility calculus

utility = diagnosticity + accessibility

level-k reasoning about what a potential guesser would do random walks starting from each word and converging on clues

experiments

E1: two-player	speakers gave 1-word cluesguessers picked two words
E2: single-player	 words on some boards were changed speakers asked to rate clues
E3: single-player	no boardspeakers produced free associations to target words
E4: two-player	 words on some boards were changed speakers & guessers produced candidates before final selection

experiment 1: minimal distractors

experiment 2/4: powerful distractors

experiment 2 and 4 board TIGER EXAM BUN TRACE **STORM** SNAKE ALARM HAND HOUSE **BEAR** BIRTH TEST ALIVE FRESH DEAD TOWER PORK ASH LION HELL

Kumar and Hawkins (2025; JEP: General)

speakers are sensitive to diagnosticity

models are sensitive to diagnosticity

Kumar and Hawkins (2025; JEP: General)

TRACE

ALARM

TEST

TOWER

HELL

speakers are sensitive to accessibility

feline

(no board) (candidates)

É4

É4

(final)

Ë3

0.0

E1

Kumar and Hawkins (2025; JEP: General)

helping

- helping has inherently cognitive roots
- infants (and animals) appear to help without any extrinsic reward
- what cognitive mechanisms underlie wanting help or being helped?

goal: move all blue blocks to room C

goal: move all blue blocks to room C

unknown goal: move all blue blocks to room C

unknown goal: move all blue blocks to room C

unknown goal: move all blue blocks to room C

principals make useful and pragmatic moves

u(m|g,c) =MINIMUMMOVES(g,c)-MINIMUMMOVES(g,s(m,c))

purple move

- moving green blocks to B1
- moving blue blocks to A
- moving blue blocks to A1
- moving blue blocks to A2
- moving blue blocks to C
- moving blue blocks to C1
- moving blue blocks to C2
- moving blue blocks to B1
- uncovering all blue blocks
- covering all red blocks
- clearing B2
- filling B1

aqua move

- moving blue blocks to C
- move blue blocks to C1
- filling C1
- covering all red blocks
- clearing A
- clearing A1

helpers tend to pass their turn (initially)

Kumar & Steyvers (2023), CogSci 2023

modeling helper performance

actual participant data

model predictions

modeling principal performance

actual participant data

model performance

social learning as inference

child as learner: evaluating evidence

- Gweon et al. (2014) evaluated whether children (6-7yo) can evaluate and compensate for under-informative teaching
- teacher first provided under-informative or fully-informative demonstrations of a toy, and then demonstrated one function of a new toy
- recorded time spent exploring the squeaker part of the toy

child as learner: evaluating evidence

 children spent less time on the squeaker and more time on other parts when the teacher was underinformative, vs. when the teacher was fully-informative

social learning as inference

child as teacher: inferring utilities

- Bridgers, Jara-Ettinger, and Gweon (2020) tested
 5–7-year-olds with toys
 - low/high cost
 - low/high reward
- experiment 2: choose a toy to teach or play

child as teacher: inferring utilities

- Bridgers, Jara-Ettinger, and Gweon (2020) tested 5–7-year-olds with toys
 - low/high cost
 - low/high reward
- experiment 2: choose a toy to teach or play
- children chose low-reward/high-cost toys to teach and high-reward/low-cost toys to play with
- children prioritized the learner's utilities over their own when deciding what to teach

child as teacher: inferring utilities

- experiment 3: choose a toy to teach after exploration or instruction
- children chose low-reward/high-cost toys regardless of whether or not they explored the toys themselves or not
- children can infer the costs for others' learnings even in the absence of direct experience

social cognition

- researchers combine developmental

 adult human studies with explicit
 mathematical models to account for a
 wide variety of cognitive phenomena
 - communication
 - helping
 - collaboration
 - cooperation
 - competition
 - teaching
 - ...

RL Goldstone, E Andrade-Lotero, RD Hawkins, ME Roberts (2023). The emergence of specialized roles within groups. *Topics in Cognitive Science*.

next class

• culture and cognition