

DATA ANALYSIS

Week 10: Modeling Relationships

logistics

- now available: formula spreadsheet! all formulas + links in one place

	Formula Spreadsheet ☆ 🗈 🔗 🔁 File Edit View Insert Format Data Tools Extensions Help										
c											
A1	✓ fx What										
	А	В	С	D	E	F					
1	What	Population or Sample	Math Notation/Formula	Sheets formula	Online Calculator	Notes					
2	mean	Population	$\mu = \frac{\sum x}{N}$	=AVERAGE(data_range)							
3	mean	Sample	$\bar{X} = M = \frac{\sum x}{n}$	=AVERAGE(data_range)							
4	median	Both		=MEDIAN(data_range)							
5	mode	Both		=MODE(data_range)		be careful about multiple modes, Sheets will often just return the one					
6	variance	Population	$\sigma^2 = \frac{SS}{N} = \frac{\Sigma(X-\mu)^2}{N}$	=VAR.P(data_range)							
7			$\sum (X-M)^2$								

logistics

- midterm 2 is creeping up on us!
- weeks 7-11 content

10	T: March 25, 2025	<u>W10: Modeling Relationships</u>
10	Th: March 27, 2025	W10 continued
10	Su: March 30, 2025	Week 10 Quiz due
11	M: March 31, 2025	PS4 due / Opt-out Deadline 2
11	T: April 1, 2025	W11: Special Cases
11	Th: April 3, 2025	W11 continued
12	M: April 7, 2025	PS5 + PS4 revision due
12	T: April 8, 2025	<u>W12: Loose Ends / Exam 2 review</u>
12	Th: April 10, 2025	Exam (Midterm) 2

class survey discussion

today's agenda

hypothesis testing review

hypothesis testing for regression

W10 Activity 1: hypothesis testing review

- activity doc
- describe (and/or calculate) the ...
 - key variable(s) & research question
 - sample and population
 - sample statistic
 - null & alternative hypothesis
 - sampling distribution
 - critical region, test statistic, p-value
 - statistical significance
 - type I and type II error
 - power
 - effect size

"We surveyed faculty, postdoctoral fellows, and graduate students (N = 1820) from 30 disciplines (12 STEM, 18 SocSci/Hum) (table S1) at geographically diverse high-profile public and private research universities across the United States"

> correlation = -0.60 (all fields) sample size = 30 (all fields)

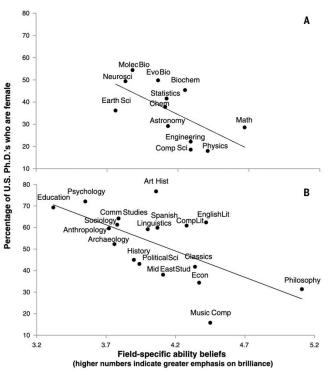


Fig. 1. Field-specific ability beliefs and the percentage of female 2011 U.S. Ph.D.'s in (A) STEM and (B) Social Science and Humanities.

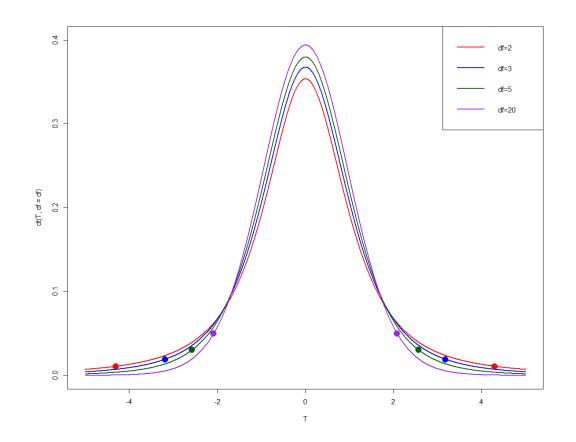
lingering question

As the sample size gets larger, how does the threshold of the correlation value that is <u>needed</u> for us to obtain a statistically significant result change?

- There is no consistent relationship between sample size and the critical value for a significant correlation.
- It stays constant
- The correlation threshold gets smaller
- The correlation threshold gets larger

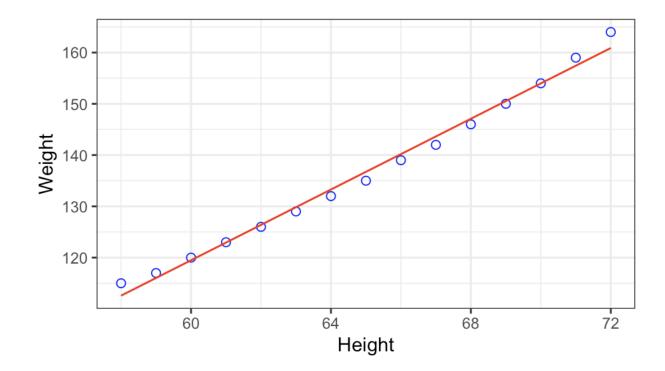
lingering question

- the t-distribution has fatter tails than the normal distribution
- as *n* increases, the t-distribution approaches the normal distribution
- so, with greater sample size, there is less data in the tail
- to get to the critical threshold value, we look at the 5% cut off, but that cutoff has to be moved in as there is less data in the tails!
- i.e., the threshold value decreases



review: linear regression

- linear regression attempts to find the equation of a line that best fits the data,
 i.e., a line that could explain the variation in one variable using the other variable
- Y = bX + a + error
- slope: $b = r \frac{s_y}{s_x}$
- intercept: $a = M_y bM_x$



review: model fit

data = model + error data = (a + bX) + error $Y = \hat{Y}$ + error

SStotal denotes the total error left over after the mean has been fit to Y

$$SS_{total} = \sum (Y - M_y)^2$$

*SS*_{error} denotes the error left over after the line $\hat{Y} = a + bX$ has been fit

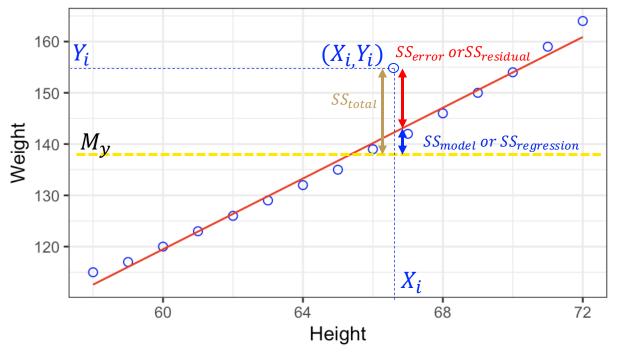
$$SS_{error} = \sum (Y - \hat{Y})^2$$

 SS_{model} denotes the difference, i.e., the error that our line is able to explain vs. what was left over from the mean!

$$SS_{model} = \sum (\widehat{Y} - M_y)^2$$

model fit is assessed relative to the mean, i.e., how much better did we do compared to the mean model?

$$SS_{total} = SS_{model} + SS_{error}$$



two measures of goodness/errors

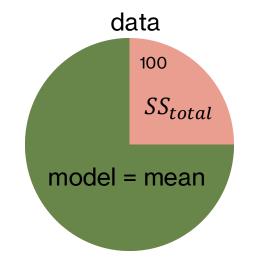
 coefficient of determination (R²): percentage of variance explained in Y due to X

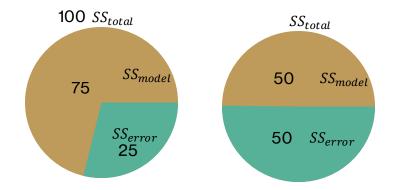
$$- R^2 = \frac{SS_{model}}{SS_{total}}$$

- standard error: "average" error left over in Y

- standard error of estimate:
$$SE_{model} = \sqrt{\frac{SS_{error}}{df}} = \sqrt{\frac{SS_{error}}{n-2}}$$

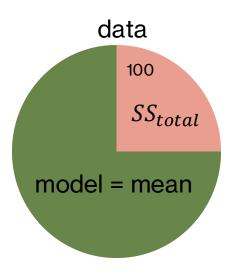
- standard error of correlation:
$$SE_r = s_r = \sqrt{\frac{1-r^2}{n-2}}$$

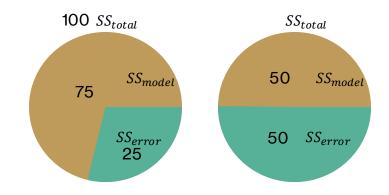




overall test of model: ANOVA

- an <u>analysis of variance (ANOVA)</u> tests whether a variable explains significantly more variance in another variable than chance
 - $SS_{total} = SS_{model} + SS_{error}$
- we can calculate the ratio between the variance explained by the model and the variance expected/left over
 - if $\frac{SS_{model}}{SS_{error}}$ is high, the model explains **more** variance than expected
 - if $\frac{SS_{model}}{SS_{error}}$ is low, the model explains **less** variance than expected
- typically, we want the "average" variance explained, so we also divide this by *degrees of freedom*





F ratio

- The F ratio compares the "average" squared error between model (explained variance) and the natural (unexplained) variance (data = model + error)

$$F = \frac{explained \ variance}{unexplained \ variance} = \frac{MS_{model}}{MS_{error}} = \frac{SS_{model}/df_{model}}{SS_{error}/df_{error}}$$

- obtaining *SS_{model}* and *SS_{error}*
 - $SS_{error} = \sum (Y \hat{Y})^2$ and $SS_{total} = \sum (Y M_y)^2$
 - $SS_{model} = SS_{total} SS_{error} = \sum (\hat{Y} M_y)^2$
- obtaining df_{model} and df_{error}
 - k denotes the number of levels of the independent variable OR number of estimated parameters
 - $df_{model} = k 1$ (also called df₁ or df_{numerator})
 - $df_{error} = n k$ (also called df₂ or df_{denominator})

a puzzle

- how many pieces of information do you need to <u>definitely</u> guess the color of the traffic light?
- light is not green
- light is not red
- 2 pieces of information is enough

a puzzle

- the mean of quiz scores for 5 students is 9 points.
- what are the scores?
- what if I told you some of the numbers?
- four students' scores are 8, 10, 8, and 9, what is the score of the fifth student?

degrees of freedom (df)

- main idea: how many pieces of information are needed to obtain a statistic?
- mean = $M = \frac{\sum X}{n}$
 - all values in a dataset are needed
 - why? because changing even a single score would change M
 - df = n
- standard deviation = $\frac{\sum (X-M)^2}{n-1}$
 - computing M restricts the scores that went into the calculation
 - if M is known, you only need to know n-1 scores to find the last score
 - only n 1 scores are free to vary once M is known
 - for SD, effectively only n 1 deviations are free to vary
 - df = n 1

degrees of freedom (df)

- correlations
 - what is needed to calculate $t_{observed} = \frac{r \rho}{SE_r}$?
 - *r*, which need two means to be estimated (everything else follows)
 - df = n 2 for t-distribution of correlations
- another way to think about df : number of estimated parameters

degrees of freedom (df)

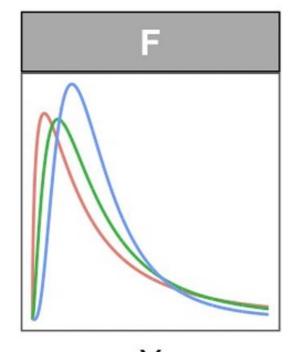
- simple linear regression ($\hat{Y} = a + bX$ where $b = r \frac{s_y}{s_x}$ and $a = M_y bM_x$)
 - $F = \frac{MS_{model}}{MS_{error}} = \frac{SS_{model}/df_{model}}{SS_{error}/df_{error}}$
 - $SS_{model} = \sum (\hat{Y} M_y)^2$
 - k = 2 total estimated parameters (b and a)
 - but knowing *b* restricts *a* so we lose one degree of freedom
 - $df_{model} = k 1$
 - $SS_{error} = \sum (Y \hat{Y})^2$
 - *n* observations and 2 total estimated parameters to compute \hat{Y} (*b* and *a*)
 - $df_{error} = n k$

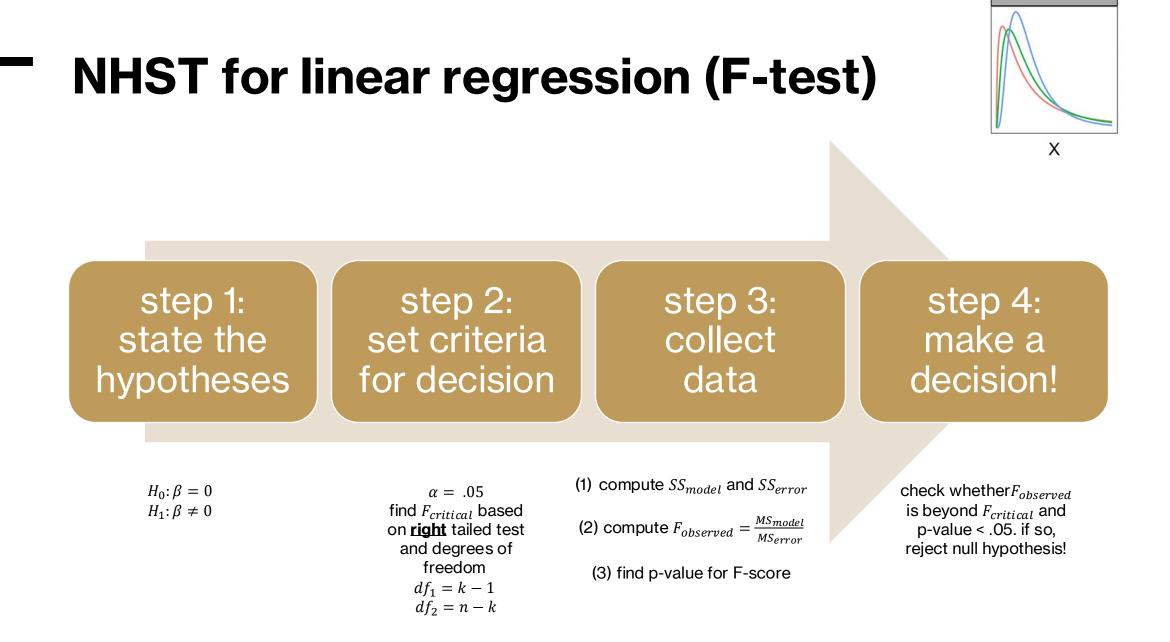
interpreting F values

- The F-distribution is a positively skewed distribution
- defined by two parameters (df $_1$ and df $_2$) that determine the exact form/shape
- F-values are typically **<u>non-negative</u>**: why??

-
$$F = \frac{MS_{model}}{MS_{error}} = \frac{SS_{model}/df_{model}}{SS_{error}/df_{error}}$$

- F = 1: $MS_{model} = MS_{error}$ i.e., the model does not do any better than random chance
- F > 1: more variance explained by model than random chance
- F ratios are enable us to generalize our models to the population (in contrast to *R*² and standard error)





F

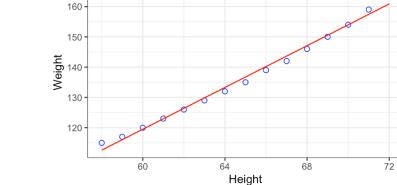
F-test for women dataset

- step 1: state the hypotheses
 - $H_0: \beta = 0$, height explains no variance in weights for women
 - $H_1: \beta \neq 0$, height explains some variance in weights for women
- step 2: set criteria for decision
 - $\alpha = .05, k = 2, n = 15$
 - F_{critical}
 - = F(k 1, n k) = F(1, 13) = 4.667

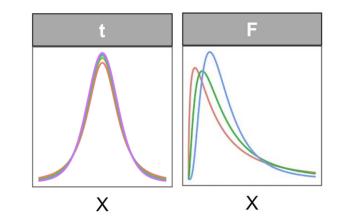
- step 3: collect data
 - $SS_{error} = 30.23$ and $SS_{total} = 3362.93$
 - thus, $SS_{model} = SS_{total} SS_{error} = 3332.7$
 - compute the F-statistic:

$$F_{observed} = \frac{MS_{model}}{MS_{error}} = \frac{SS_{model}/df_{model}}{SS_{error}/df_{error}} = \frac{3332.7/1}{30.23/13} = 1433$$

- compute p-value: $p_{observed} < .0001$
- step 4: decide!
 - Height explains significantly more variance in weights than expected by chance, b = 3.45, F (1, 13) = 1433, p < .0001.



t and F relationship



- regression test for women dataset
 - F(1, 13) = 1433, p < .0001
- conduct a correlation test for women dataset (r = .995, n = 15)
 - -r = .995, t(13) = 37.86, p < .001
- what is t^2 ?
- for the same data, $t^2 = F !!$
- t tests are in original units of the sample statistic, F tests are in squared error units

F-tables

- F-tests are typically represented in tables

		SS	df	MS	F	p-value
SS _{model}	regression	3332.7	1	3332.7	1433.02	<.0001
SS _{error}	residual	30.23	13	2.33		
SS _{total}	total	3362.93	14			

- knowing parts of the F table are sufficient for completing it!

hypothesis tests in R

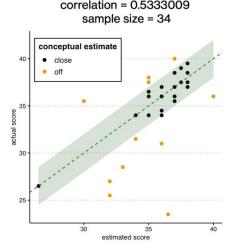
<pre>data("women")</pre>	Coefficients:					
View(women)	Estimate Std. Error t value Pr(> t)					
	(Intercept) -87.51667 <u>5.93694 -14.74 1.71e-09 ***</u>					
<pre>weight_model = lm(data = women, weight ~ height)</pre>	height 3.45000 0.09114 37.85 1.09e-14 ***					
<pre>summary(weight_model)</pre>						
car::Anova(weight_model)	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Anova	Table	(Type	II	tests)
-------	-------	-------	----	--------

		SS	df	MS	F	p-value
SS_{model}	IV	3332.7	1	3332.7	1433.02	<.0001
SS _{error}	residual	30.23	13	2.33		

Response:	weia	Iht					
	Sum	Sq	Df	F	value	Pr(>F)	
height	3332	.7	1		1433	1.091e-14	***
Residuals	30	.2	13				

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



review: conceptual exam t-test

- step 1: state the hypotheses
 - $H_0: \rho = 0$, no correlation between estimate and actual score on conceptual exam
 - $H_1: \rho \neq 0$, a correlation between estimate and actual score on conceptual exam
- step 2: set criteria for decision
 - $t_{n-2} = t_{32} = t_{critical} = \pm 2.0369 at \alpha = .05$

- step 3: collect data
 - correlation *r* = 0.5333009
 - compute the standard error for correlation

$$SE_r = s_r = \sqrt{\frac{1 - r^2}{n - 2}} = 0.1496$$

- compute the t-statistic:

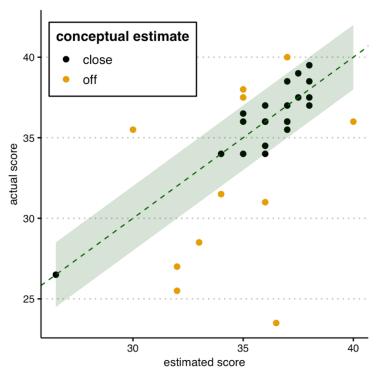
$$- t_{observed} = \frac{r-0}{SE_r} = \frac{0.5333009}{0.1496} = 3.57$$

- compute p-value: $p_{observed} = .001$
- step 4: decide!
 - estimates significantly correlate with actual scores on the conceptual exam, r = .53, t(32) = 3.57, p = .001

W10 Activity 2: conduct F test

- <u>data</u>

correlation = 0.5333009 sample size = 34



creating F-table

```
> stats_model = lm(data = data_analysis,
+ m1c_actual ~ m1c_estimate)
> car::Anova(stats_model)
Anova Table (Type II tests)
```

- F-tests are typically represented in tables

		SS	df	MS	F	p-value
SS _{model}	regression					
SS _{error}	residual					
SS _{total}	total					

practicing connections

- data = model + error
- most sample statistics and statistical tests have the same format

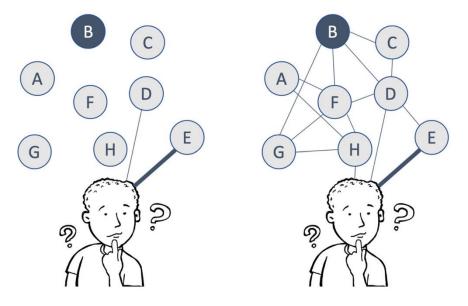
observed

expected

- how are these concepts similar? how are they different?
 - standard deviation
 - z-score
 - t-test
 - F-test

Practicing Connections: A Framework to Guide Instructional Design for Developing Understanding in Complex Domains

Laura Fries¹ · Ji Y. Son² · Karen B. Givvin¹ · James W. Stigler¹



where are we going next?

data = model + error

thus far

data = mean + error
data = X (interval/ratio) + error

after break

- data = X (interval/ratio/nominal) + error
- data = X + Y + error
- data (NOIR) = model (NOIR) + error

next time

- new data

Before Tuesday

- Review <u>W7</u> slides!
- Watch: <u>Hypothesis Testing (Linear Regression</u>). (ok to watch after Tuesday!)

Before Thursday

- Watch: <u>Completing F tables</u>.
- Watch: <u>Hypothesis Testing (Two groups F Test)</u>.
- Watch: <u>Hypothesis Testing (One-way ANOVA)</u>.

After Thursday

• See <u>Apply</u> section.

Here are the to-do's for this week:

- Submit Week 10 Quiz
- Submit Problem Set 4
- Submit any lingering questions <u>here</u>!
- Extra credit opportunities:
 - Submit Exra Credit Questions
 - Submit Optional Meme Submission