

DATA ANALYSIS

Week 11: Special cases (one sample z and t-test)

today's agenda

hypothesis testing with a single mean

general hypothesis testing approach

- we want to explain some variation in the world/population
- we take a sample and obtain a sample statistic based on an underlying model
- we then assume that our model is wrong / unnecessary
- we create a (hypothetical) sampling distribution of the sample statistic
- we ask what are likely and unlikely values of the sample statistic under this assumption
- we assess the likelihood of the observed sample statistic under this sampling distribution
- we make the decision to reject or fail to reject the "null" assumption

our progress so far

data = model + error

thus far

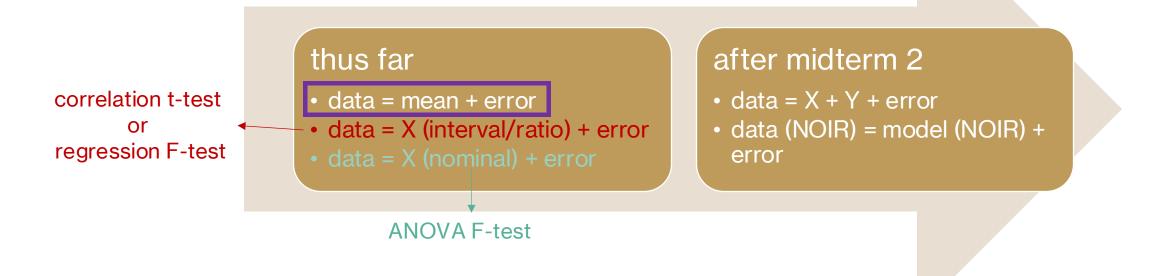
- data = mean + error
- data = X (interval/ratio) + error
- data = X (nominal) + error

after midterm 2

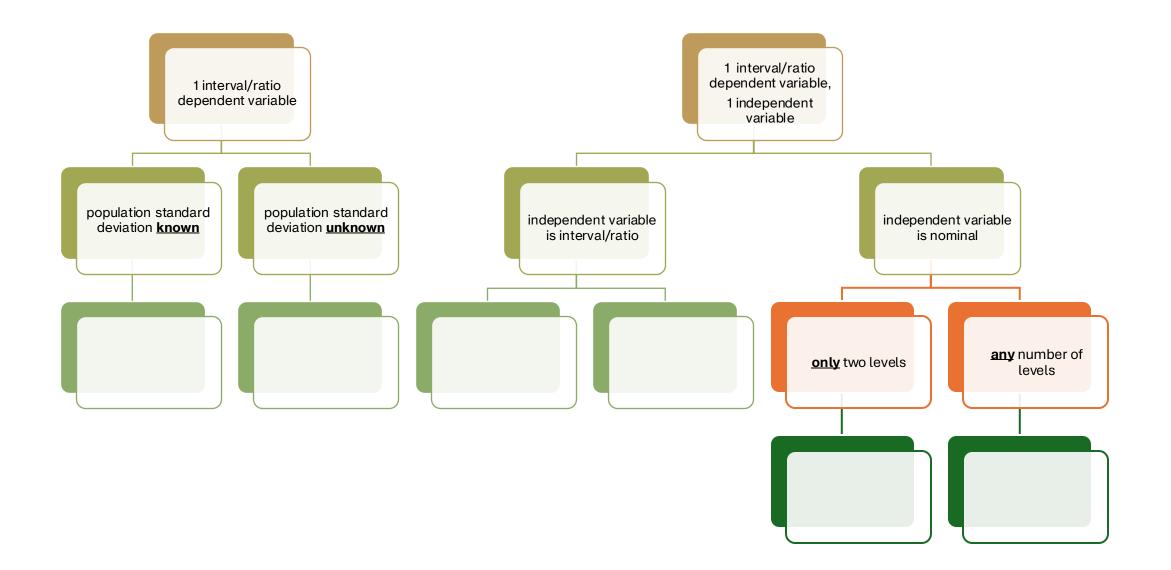
- data = X + Y + error
- data (NOIR) = model (NOIR) + error

our progress so far

data = model + error



hypothesis testing flowchart



sampling with means

- the average mother sea turtle lays $\mu = 80$, $\sigma = 6$ eggs per mating season. We work for an endangered species foundation, and are testing the effectiveness of a new hormone (X15) on turtle fertility. We predict that turtles treated with the hormone will produce *different* nest sizes from the average turtle (no direction). We collect a sample of n=30 turtles from the above population and treat them with the hormone. We then count the number of eggs in their nest and get a mean of 84.

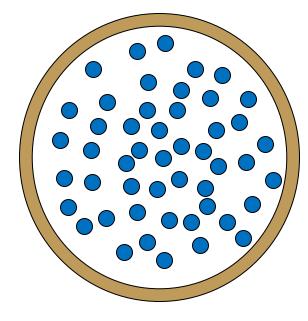
- is the fertility hormone effective?

framing the problem

- population characteristics (usual turtles): $\mu = 80$, $\sigma = 6$
- sample characteristics (our 30 turtles): *M* = 84
- two possible explanations for the difference in sample mean (M) and population mean (μ)
 - sampling error (H₀: null hypothesis)
 - true effect of hormone (H₁:alternative hypothesis)
- we <u>assume the null hypothesis</u> is true and set out to reject this assumption with our evidence

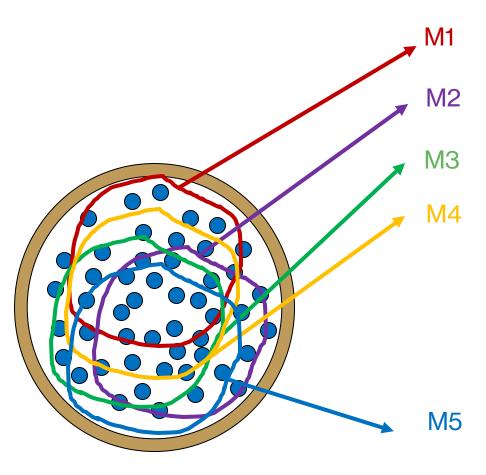
sampling with means

- we know some things about the population
- $\mu = 80, \sigma = 6$
- we could take random samples from this original population and examine the distribution of means
- sampling distribution of means



sampling with means

- we know some things about the population
- $\mu = 80, \sigma = 6$
- we could take random samples from this original population and examine the distribution of means
- sampling distribution of means
- once we know the form of this sampling distribution (t
 / F / normal), we can assess the probability of
 obtaining a sample as or more extreme as ours



central limit theorem (CLT)

- the central limit theorem states that for <u>any</u> population with mean μ and standard deviation σ , the distribution of sample means for sample size *n* will have:
 - a mean of $\mu_M = \mu$ = expected value of M
 - a standard deviation of $\sigma_M = \frac{\sigma}{\sqrt{n}}$ = standard error of the mean or M
 - will approach a normal distribution as n approaches infinity
 - distribution of sample means will be normally distributed <u>even if the population was not</u> normally distributed (if n is large enough!)
 - typically n (number of scores in a sample) around 30 yields a reasonably normal distribution
- CLT only applies to the distribution of sample means, i.e., if our sample statistic is NOT a mean, and our hypotheses are NOT about means, then we must use a different sampling distribution for the null hypothesis

typical sampling distributions

sample statistic	sampling distribution	standard error
means	normal (central limit theorem)	$\sigma_M = \frac{\sigma}{\sqrt{n}}$
slopes / correlation	Student's <i>t</i> distribution	$SE_r = s_r = \sqrt{\frac{1 - r^2}{n - 2}}$ $SE_{model} = \sqrt{\frac{SS_{error}}{n - 2}}$
ratio of squared errors	F-distribution	$F_{observed} = \frac{MS_{model}}{MS_{error}}$

step 1: stating the hypotheses

 null hypothesis: X15 does not have an effect on nest size, i.e., it stays the same and any variation observed in samples is simply due to sampling error

*H*_o: $\mu = 80$

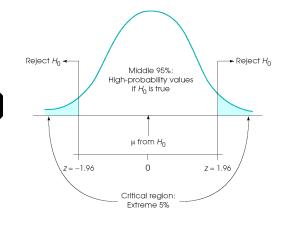
- alternative hypothesis: X15 has an effect on nest size

 $H_1: \mu \neq 80$

step 2: set criteria for decisio

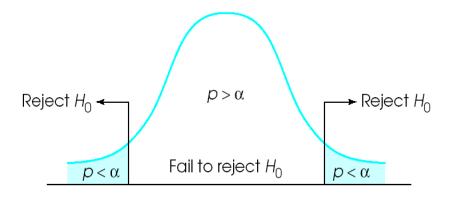
- examine the distribution of sample means -
- the central limit theorem states that for **any** population with mean μ and standard deviation σ , the distribution of sample means for sample size *n* will have:
 - a mean of $\mu_M = \mu$ = expected value of M = 80
 - a standard deviation of $\sigma_M = \frac{\sigma}{\sqrt{n}} = \frac{6}{\sqrt{30}} = 1.095$
- represent the problem graphically -
- criteria: α -level = .05 (extreme 5%) -
- find $z_{critical} = \pm 1.96$, $p_{critical} = .05$ (<u>calculator</u>) -
- for a p-value smaller than .05, the obtained sample mean is unlikely to have come from this expected sampling distribution for the null hypothesis

t value z value chi-square value	f value	Results
r value		z value:
Significance Level a: (0 to 1)	O anno a la su da	1.6449
	Sample Inputs	z value for Right Tailed Probability:
0.05		1.6448536
C <u>Reset</u>	Calculate	z value for Left Tailed Probability:
		-1.6448536
		z value for Two Tailed Probability:
		-1.959964 & 1.959964



step 3 and 4: collect data and decide!

- we collect the data and evaluate the probability of obtaining the data as extreme as this, under the null hypothesis
 - P (data | null)
 - compute z-score of sample mean under the sampling distribution
 - $z_{observed} = \frac{M-\mu}{\sigma_M} = \frac{84-80}{1.095} = 3.65$
 - remember that $z_{critical} = \pm 1.96$
 - look up the probability, $p_{observed} < .001$
 - this sample is very <u>rare</u> if the null hypothesis was true
- conclusion: we reject the null hypothesis that the hormone does not produce a difference
- reporting: X15 has a significant effect on sea turtle fertility (*M* = 84, *z* = 3.65, p < .001)



W11 Activity 1

- complete on Canvas

W11 Activity 1a

- If the final exam scores for the population have a standard deviation of σ = 12, does the sample provide enough evidence to conclude that the new online course is significantly different from the traditional class? Use a two-tailed test with α = .05.

step 1: stating the hypotheses

 null hypothesis: the new online course does not produce any change in scores compared to the traditional class and any variation observed in samples is simply due to sampling error

*H*_o: $\mu = 71$

 alternative hypothesis: the new online course is significantly different from the traditional class

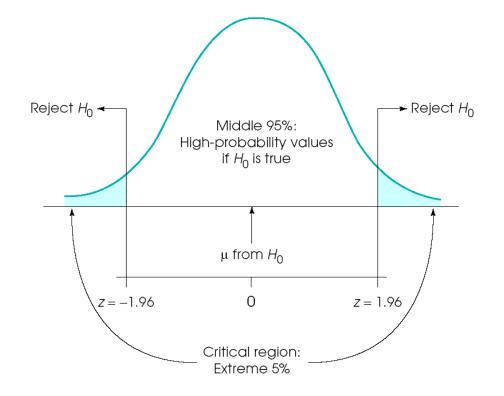
$$H_1: \mu \neq 71$$

step 2: set criteria for decision

- examine the distribution of sample means
- n = 36
- $\mu_M = \mu$ = expected value of M = 71

$$- \sigma_M = \frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{36}} = 2$$

- criteria:
 - α -level = .05
 - $z_{critical} = \pm 1.96$ (extreme 5%)



step 3 and 4: collect data and decide!

 compute z-score of this mean under the sampling distribution

-
$$z_{observed} = \frac{M-\mu}{\sigma_M} = \frac{76-71}{2} = 2.5$$

- $p_{observed} = .012$
- remember that $z_{critical} = \pm 1.96$ and alpha = .05
- this sample is very rare if the null hypothesis was true
- conclusion: we reject the null hypothesis
- reporting: online course has a significant effect on scores
 (z = 2.5, p = .012)

Z=2.5

The two-tailed P value equals 0.0124 By conventional criteria, this difference is considered to be statistically significant.

W11 Activity 1b

- If the final exam scores for the population have a standard deviation of σ = 12, does the sample provide enough evidence to conclude that the new online course is significantly different from the traditional class? Use a two-tailed test with α = .01.

what changes?

- step 1: stating the hypotheses (same!)
- step 2: set criteria for decision
 - n = 36
 - $\mu_M = \mu$ = expected value of M = 71
 - $\quad \sigma_M = \frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{36}} = 2$
 - $z_{critical}$ based on alpha = .01 = \pm 2.58
 - $p_{critical} = .01$
- step 3: collect data (same!)
 - $z_{observed} = \frac{M-\mu}{\sigma_M} = \frac{76-71}{2} = 2.5$
 - $p_{observed} = .012$
- step 4: decide
 - $z_{observed} < z_{critical}$ and $p_{observed} > p_{critical}$
 - cannot reject the null hypothesis!

t value	z value	chi-square value	f value	
r value				
Significance Level a: (0 to 1) <u>Sample Inputs</u>				
0.01				
C <u>Rese</u>	<u>ət</u>		Calculate	
Results z value:				
2.32	63			

z value for Right Tailed Probability:

2.3263479

z value for Left Tailed Probability:

-2.3263479

z value for Two Tailed Probability:

-2.5758293 & 2.5758293

W11 Activity 1c

- If the population standard deviation is σ = 18, is the sample sufficient to demonstrate a significant difference? Again, use a two-tailed test with α = .05.

what changes?

- step 1: stating the hypotheses (same!)
- step 2: set criteria for decision
 - n = 36
 - $\mu_M = \mu$ = expected value of M = 71
 - $\quad \sigma_M = \frac{\sigma}{\sqrt{n}} = \frac{18}{\sqrt{36}} = 3$
 - $z_{critical} = \pm 1.96$
- step 3: collect data
 - $z_{observed} = \frac{M-\mu}{\sigma_M} = \frac{76-71}{3} = 1.67$
 - $p_{observed} = .0475 + .0475 = .095$
- step 4: decide
 - $z_{observed} < z_{critical}$
 - cannot reject the null hypothesis!

Z=1.67

The two-tailed P value equals 0.0949

W11 Activity 1d

- If the population standard deviation is σ = 18, is the sample sufficient to demonstrate that online courses **increases** the score compared to traditional class? Use a one-tailed test with α = .05.

what changes?

- step 1: stating the hypotheses
 - $H_1: \mu > 71$ and $H_0: \mu \le 71$
- step 2: set criteria for decision
 - n = 36, $\mu_M = \mu$ = expected value of M = 71
 - $\quad \sigma_M = \frac{\sigma}{\sqrt{n}} = \frac{18}{\sqrt{36}} = 3$
 - $z_{critical} = +1.65$ (only one side)
- step 3: collect data
 - $z_{observed} = \frac{M \mu}{\sigma_M} = \frac{76 71}{3} = 1.67$ - $p_{observed} = \frac{.0949}{2} = .0475$
- step 4: decide
 - $z_{observed} > z_{critical}$
 - we can reject the null hypothesis if we use a one-tailed test!

Results

z value:

1.6449

z value for Right Tailed Probability:

1.6448536

z value for Left Tailed Probability:

-1.6448536

z value for Two Tailed Probability:

-1.959964 & 1.959964

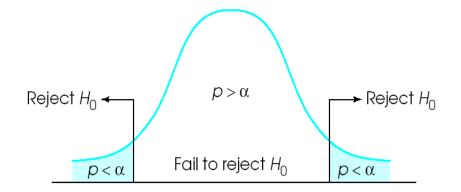
Z=1.67

The two-tailed P value equals 0.0949

summary

- making the critical region region smaller (by decreasing the α-level) makes the z-test more conservative, i.e., z_{critical} will be higher, making it harder to reject the null hypothesis
- higher standard errors (due to high population variance σ or low sample size *n*) will impact the sample z-score ($z_{observed}$), i.e., where the sample statistic lies relative to the distribution

$$z = \frac{M - \mu}{\sigma_M}$$
 and $\sigma_M = \frac{\sigma}{\sqrt{n}}$



Cohen's d: effect size for means

- hypothesis testing depends on sample sizes higher sample sizes typically lead to statistically significant effects, even if those effects may be small
- effect sizes are a way to quantify the magnitude of the effect independent of sample size
- Cohen's d: effect size for means

- Cohen's d =
$$\frac{mean \, difference}{standard \, deviation} = \frac{M - \mu}{\sigma}$$

Magnitude of <i>d</i>	Evaluation of Effect Size
d = 0.2	Small effect (mean difference around 0.2 standard deviation)
d = 0.5	Medium effect (mean difference around 0.5 standard deviation)
d = 0.8	Large effect (mean difference around 0.8 standard deviation)

one sample: z to t-distribution

- inferential statistics = from samples to populations
- but...for a one-sample z-test, we need to know the mean (μ) and standard deviation (σ) of the population! this information is usually not known!
- when σ is unknown and we have to rely on sample standard deviation (s) as an estimator, we cannot use the normal distribution as our sampling distribution

$$\sigma_M = rac{\sigma}{\sqrt{n}}$$
 vs. $s_M = rac{s}{\sqrt{n}}$

- we instead use the student's t distribution

- estimated Cohen's
$$d = \frac{M-\mu}{s}$$

z-test vs. one-sample t-test

z-tests

- **when**: population mean and standard deviation are known
- want to compare: sample mean to population mean

one sample t-test

- **when**: population standard deviation is unknown
- want to compare: sample mean to population mean

W11 Activity 2

- complete on Canvas

W11 Activity 2a

- research examining the effects of preschool childcare has found that children who spent time in day care, especially high-quality day care, perform better on math and language tests than children who stay home with their mothers (Broberg, Wessels, Lamb, & Hwang, 1997). In a typical study, a researcher obtains a sample of n = 10 children who attended day care before starting school. The children are given a standardized math test for which the population mean is μ = 50. The scores for the sample are as follows: 53, 57, 61, 49, 52, 56, 58, 62, 51, 56.
- Is this sample sufficient to conclude that the children with a history of preschool day care are significantly different from the general population? Use a two-tailed test with α = .01.

framing the problem

- population
 - mean μ = 50
 - standard deviation (σ) unknown, we cannot use a z-test
- sample
 - n = 10, sample scores: X = 53, 57, 61, 49, 52, 56, 58, 62, 51, 56
 - sample mean: $M = \frac{\sum X}{n} = 55.5$
 - sample standard deviation: $s = \sqrt{\frac{(X-M)^2}{n-1}} = 4.249183$
- we need to use a t-test!
 - degrees of freedom: df = n 1 = 9

-
$$s_M = \sqrt{\frac{s^2}{n}} = \sqrt{\frac{(4.249183)^2}{10}} = 1.34371$$

sheets solution

hypothesis testing

- step 1: stating the hypotheses
 - $H_0: \mu = 50; H_1: \mu \neq 50$
- step 2: setting decision criteria
 - two-tailed test (t-value calculator)
 - $t_{critical}(9) = \pm 3.2498$ for $\alpha = .01$
- step 3: collect data
 - $t_{observed} = \frac{M-\mu}{s_M} = \frac{55.5-50}{1.34371} = 4.09$
 - $p_{observed} = 0.0027$ (obtained from p-value calculator for t-score)
- step 4: decide!
 - $p_{observed} < .05 and t_{observed} > t_{critical}(9)$
 - reject H_0 and conclude that children with a history of preschool day care are significantly different from the general population, t (9) = 4.09, p = .003.

sheets solution

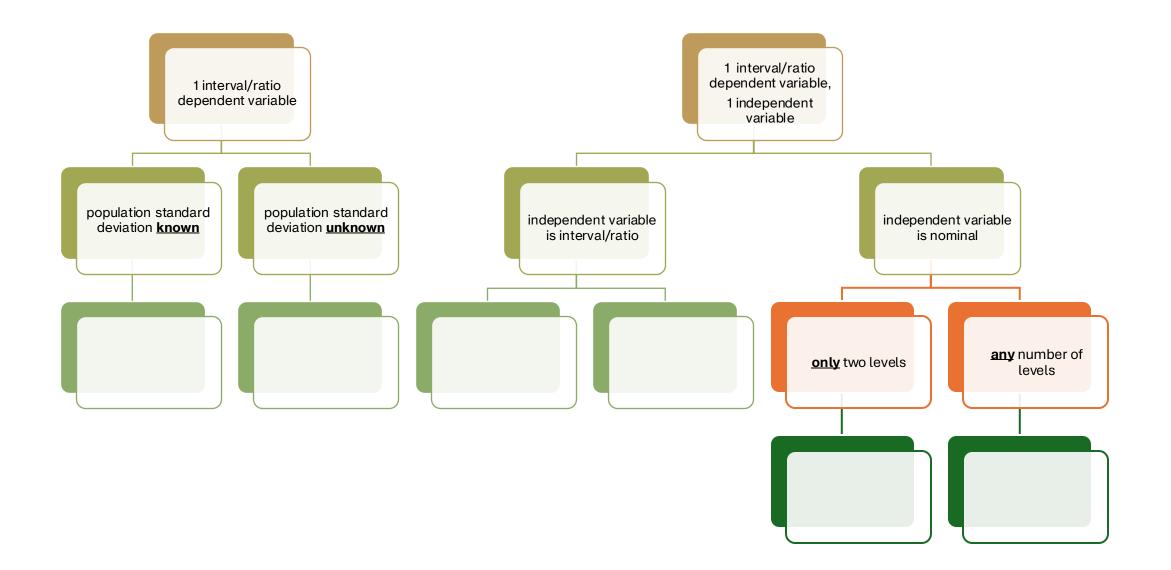
W11 Activity 2b: Cohen's d

- estimated $d = \frac{M-\mu}{s}$
- population mean μ = 50
- sample mean: $M = \frac{\sum X}{n} = 55.5$
- sample standard deviation: $s = \sqrt{\frac{(X-M)^2}{n-1}} = 4.249183$
- $d = \frac{M \mu}{s} = \frac{55.5 50}{4.249} = 1.29$
- Math achievement scores for children with a history of preschool day care are significantly different from the general population, *t* (9) = 4.09, *p* = .003, *d* = 1.29.

W11 Activity 2c and 3d

	ltiple Choice 1 point
Let'	s say I re-ran the study another 100 times. The distribution of sample means I will obtain from each of those studies will be:
\bigcirc	Normal
\bigcirc	t-distributed
\bigcirc	F-distributed
\bigcirc	Cannot be determined
Let'	Itiple Choice 1 point s say I re-ran the study another 100 times. If there was NO true effect of daycare in the population, the distribution of sample means I will obtain from each of those dies will have the mean:
\bigcirc	50
\bigcirc	55.5
\bigcirc	10
0	Impossible to know

hypothesis testing flowchart



next time

Here are the to-do's for this week:

- Submit <u>Week 11 Quiz</u>
- Submit Problem Set 5
- Complete Practice Midterm 2 (Conceptual)
- Submit any lingering questions <u>here</u>!
- Extra credit opportunities:
 - Submit Exra Credit Questions
 - Submit Optional Meme Submission

Before Tuesday

• [optional but encouraged] Read Chapters 7, 8, and 9 from the Gravetter & Wallnau (2017) textbook.

Before Thursday

- [optional but encouraged] Read Chapter 10 from the Gravetter & Wallnau (2017) textbook.
- Watch: <u>Hypothesis Testing (Independent Sample t-test)</u>.
 - Practice Data
 - Solution Sheet

After Thursday

• See <u>Apply</u> section.