

DATA ANALYSIS

Week 13: Additional predictors

logistics

Opt-out of Problem Sets (Deadline 3: After Midterm 2) Apr 23| 1 pts

Problem Set 7: First Attempt Apr 30 | 2.5 pts

Problem Set 7: Second Attempt May $8 \mid 2.5 \mathrm{pts}$

国 Data Around Us! Apr 30 | 5 pts

Meme Submission
1 pts
Student Practice Questions Apr 24 | 2.5 pts

- PS6 revisions due TODAY
- PS7 opt-out deadline Apr 23
- PS7 due Apr 30
- class participation:
- Canvas discussion board posts due Apr 30
- "practice" questions (10 multiple-choice/true-false) due Apr 24
- LAST DAY to submit any late work: May 13

12	F: April 12, 2024	Exam (Midterm) 2
13	W: April 17, 2024	W13: Additional Predictors
13	F: April 19, 2024	W13 continued...
14	T: April 23, 2024	Problem Set Opt-out Deadline 3
14	W: April 24, 2024	W14: Non-Independent/Miscellaneous Data
14	F: April 26, 2024	W14 continued...
15	T: April 30, 2024	Problem Set 7 due
15	W: May 1, 2024	W15: Odds and Ends
15	F: May 3, 2024	Final Exam
16	W: May 8, 2024	Wrapping Up!

the tooth growth dataset

- this in-built R dataset contains the "length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. each animal received one of three dose
levels of vitamin C ($0.5,1$, and $2 \mathrm{mg} /$ day) by one of two
 delivery methods, orange juice or ascorbic acid"
- 2 (dose: 0.5 vs 1 mg) x 2 (supp: AA vs. OJ) design

building a factorial model

- we can start with three simple models
- grand mean model : toothGrowth ~ grand mean
- main effect 1: toothGrowth~dose
- model = dose means
- obtain $S S_{\text {dose_model }}=S S_{\text {total }}-S S_{Y-\hat{Y}_{\text {dose_model }}}$
- main effect 2: toothGrowth ~ supp
- model = supplement means
- obtain $S S_{\text {supp_model }}=S S_{\text {total }}-S S_{Y-\hat{Y}_{\text {supp_model }}}$

activity: compute the means

supplement	dose $=0.5$	dose=2	difference
AA	7.98	26.14	$A A_{0.5 \mathrm{mg}}-\mathrm{AA}_{2 \mathrm{mg}}=-18.16$
OJ	13.23	26.06	$\bigcirc J_{0.5 \mathrm{mg}}-\bigcirc J_{2 \mathrm{mg}}=-12.83$

difference of differences $\boldsymbol{=}$ interaction
$\left(A A_{0.5 m g}-A A_{2 m g}\right)-\left(O J_{0.5 m g}-O J_{2 m g}\right)=-5.33$

AA_overall	17.06	main effect of supplement$M_{O J}-M_{A A}=2.585$
OJ_overall	19.645	
dose_0.5	10.605	main effect of dose
dose 2	26.1	$\mathrm{M}_{0.5 \mathrm{mg}}-\mathrm{M}_{2 \mathrm{mg}}=15.495$

activity: build the models

- build the grand mean model
- obtain $S S_{\text {total }}$
- build the dose model using dose means
- obtain $S S_{\text {dose }_{\text {model }}}$
- build the supplement model using supplement means
- obtain $S S_{\text {supp }_{\text {model }}}$

activity: build the models

- build the grand mean model
- obtain $S S_{\text {total }}=3056.29975$
- build the dose model using dose means
- obtain $S S_{\text {dose }_{\text {model }}}=2400.95025$
- build the supplement model using supplement means

SStotal
3056.29975

- obtain $S S_{\text {supp }_{\text {model }}}=66.82225$

	SS
supplement_model	66.82225
dose_model	2400.95025

building a complex model

- next, we fit our more complex model
- interaction model: toothGrowth ~ dose + supp + (dose)(supp)
- substitutes each value with the respective sub-mean of the factorial design
- obtain $S S_{\text {full_model }}=S S_{\text {total }}-S S_{Y-\hat{Y}_{\text {full_model }}}=S S_{\text {total }}-S S_{\text {error }}$
- how much variance is explained by the interaction ($S S_{\text {interaction }}$)?
- $S S_{\text {interaction }}=S S_{\text {full_model }}-S S_{\text {dose }_{\text {model }}}-S S_{\text {supp }_{\text {model }}}$
- the interaction represents the part of the "full model" that is not explained by the simple models of only dose and only supplement

activity: build full model

- build full model using all sub-group means
- $S S_{\text {error }}=$?? (the error left over from the full model)
- also called $S S_{\text {residuals }}$
- $S S_{\text {full_model }}=S S_{\text {total }}-S S_{\text {error }}=$??
- $S S_{\text {interaction }}=S S_{\text {full_model }}-S S_{\text {dose }_{\text {model }}}-S S_{\text {supp }_{\text {model }}}$
- $S S_{\text {interaction }}=$??

activity: build full model

- build full model using all sub-group means
- $S S_{\text {error }}=517.505$ (the error left over from the full model)
- also called $S S_{\text {residuals }}$
- $S S_{\text {full_model }}=S S_{\text {total }}-S S_{\text {error }}=2538.79475$
- $S S_{\text {interaction }}=S S_{\text {full_model }}-S S_{\text {dose }_{\text {model }}}-S S_{\text {supp }_{\text {model }}}$
- SS $_{\text {interaction }}=71.02225$

	SS
supplement_model	66.82225
dose_model	2400.95025
interaction	71.02225
residuals	517.505
SStotal	3056.29975

NHST for factorial ANOVA

testing significance (F-test)

- we conduct individual F-tests for each type of possible effect using the remaining error ($S S_{\text {residual }}$) from the full model

$$
F\left(d f_{1}, d f_{2}\right)=\frac{M S_{\text {model }}}{M S_{\text {error }}}=\frac{S S_{\text {model }} / d f_{\text {model }}}{S S_{\text {error }} / d f_{\text {error }}}
$$

- degrees of freedom
- $d f_{1 i}=k_{i}-1$
- $d f_{\text {interaction }}=$ product of all $d f_{1 i}$
- $d f_{2}=\mathrm{n}-$ product of k_{i}

df for toothGrowth dataset

| n | k | term | df |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40 | | | |

df for toothGrowth dataset

| n | k | term | df |
| :--- | :--- | :--- | :--- | :--- |
| 40 | $2($ AA vs. OJ) | | |
| | $2(0.5 \mathrm{mg}$ vs 2 mg$)$ | | |
| | | | |

df for toothGrowth dataset

| n | k | term | df |
| :--- | :--- | :--- | :--- | :--- |
| 40 | 2 (AA vs. OJ) | supplement | |
| | $2(0.5 \mathrm{mg}$ vs 2 mg$)$ | dose | |
| | | | |
| | | interaction | |
| | | | |
| | | | |
| | | | |

df for toothGrowth dataset

n	k	term	df	
40	$2($ AA vs. OJ)	supplement	$2-1=1$	
	$2(0.5 \mathrm{mg}$ vs 2 mg$)$	dose	$2-1=1$	
		interaction	$1 \times 1=1$	
	residual	$40-\left(2^{*} 2\right)=36$	error or within	

practice question

- For an experiment involving 2 levels of factor A and 3 levels of factor B with a sample of $\mathrm{n}=5$ in each treatment condition, what is the value for $\mathrm{df}_{\text {within }}$?
- 20
- 24
- 29
- 30

practice question

- The results of a two-factor analysis of variance produce $d f=2,36$ for the F-ratio for factor A and $d f=2,36$ for the F-ratio for factor B. What are the df values for the $A x B$ interaction?
- 1, 36
- 2, 36
- 3,36
- 4,36

testing significance (F-test)

k	ss	df	MS	F_observed	F_critical	check	p_value
2 supplement_model	66.82225	1	66.82225	4.648459435	4.1132	TRUE	0.0378
2 dose_model	2400.95025	1	2400.95025	167.0210124	4.1132	TRUE	less than 0.0001
interaction	71.02225	1	71.02225	4.940630525	4.1132	TRUE	0.0326
residuals	517.505	36	14.37513889				
SStotal	3056.29975						

post-hoc tests

- once the "overall" F-tests show that substantial variation is explained by some combination of independent variables, we can dive in and explore specific effects
- sometimes, researchers have specific hypotheses about main effects and/or the interaction(s)
- these hypotheses can be tested using pairwise t-tests/one-way ANOVAs, but must be corrected for multiple comparisons

continuous IVs

- the same framework in general holds for interval/ratio-level independent variables
- multiple regression: $\mathrm{Y}=\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\ldots+\mathrm{a}+$ error
- here, the coefficients represent the change in Y as a function of the specific independent variable (X_{i}) when "controlling for" the effect of other variables
- just as the linear correlation is structurally equivalent to the slope of a line, partial correlations are structurally equivalent to the coefficients from a multiple regression
- interactions are products of the two variables (similar to covariance!)

multiple regression formula

- fitting a (multiple) regression model in Sheets / Excel
- LINEST(Y, range of X columns/predictors, TRUE, FALSE)
- interpreting coefficients of a multiple regression helps you understand the impact of specific variables
- Sheets example for mtcars

H24	fx	$=\operatorname{LINEST}$ (B2: B33, C2: E33, TRUE, FALSE)					
	A	B		C	D		E
1	ar	$\mathrm{mpg}(\mathrm{Y})$	hp (X1)		wt (X2)		product (X3)
2	Mazda RX4	21		110		2.62	288.2
3	Mazda RX4 Wag	21		110		2.875	316.25
4	Datsun 710	22.8		93		2.32	215.76
5	Hornet 4 Drive	21.4		110		3.215	353.65
	lornet Sportabout	18.7		175		3.44	602
d (hp)(wt)		c (wt)		b (hp)		a	
0.02784814832		-8.216624297		-0.120102091		49.80842343	

next time

- before class
- watch: Hypothesis Testing (Factorial ANOVA) [33 min]
- explore: Problem Set 7!
- post: Data Around Us OR practice questions (class participation)
- during class
- miscellaneous data (repeated measures + non-parametric)

optional: building a complex model

- what is our model's equation?
- toothGrowth ~ a + b (dose) +c (supp) +d (dose) (supplement)
- simple coefficients signify main effects (b and c)
- product coefficients signify interactions
- "intercept" (a) signifies the mean of toothGrowth when all other coefficients = 0
- NOTE: this is no longer a line!

	0	1
dose	$0.5 m g$	$2 m g$
supp	AA	OJ

- what are the values of a, b, c, and d ?
- nominal independent variables are converted to Os and is ("dummy codes")
- intercept (a): dose and supp are both 0, i.e., predicted mean toothGrowth in the $A A_{0.5 m g}$ group
- b: dose $=1$, supp $=0$, i.e., change in toothGrowth from $A A_{0.5 m g}$ to $A A_{2 m g}$
- c: supp $=1$, dose $=0$, i.e., change in toothGrowth from $A A_{0.5 \mathrm{mg}}$ to $O J_{0.5 \mathrm{mg}}$
- d: supp $=1$, dose $=1$, i.e., difference of differences, i.e., $\left(O J_{0.5 m g}-O J_{2 m g}\right)-\left(A A_{0.5 m g}-A A_{2 m g}\right)$
- this is called dummy coding or setting up contrasts in your model

optional: building a complex model

- "dummy coding" each factor
- then using LINEST
- provides you a linear model's equation
- see last table of Sheets solution!

