

DATA ANALYSIS

Week 13: Additional predictors

logistics

- PS6 revisions due TODAY
- PS7 opt-out deadline Apr 23
- PS7 due Apr 30
- class participation:
 - Canvas discussion board posts due Apr 30
 - "practice" questions (10 multiplechoice/true-false) due Apr 24
- LAST DAY to submit any late work: May 13

12	F: April 12, 2024	Exam (Midterm) 2
13	W: April 17, 2024	W13: Additional Predictors
13	F: April 19, 2024	W13 continued
14	T: April 23, 2024	Problem Set Opt-out Deadline 3
14	W: April 24, 2024	W14: Non-Independent/Miscellaneous Data
14	F: April 26, 2024	W14 continued
15	T: April 30, 2024	Problem Set 7 due
15	W: May 1, 2024	W15: Odds and Ends
15	F: May 3, 2024	Final Exam
16	W: May 8, 2024	Wrapping Up!

the tooth growth dataset

- this in-built R dataset contains the "length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid"
- 2 (dose: 0.5 vs 1 mg) x 2 (supp: AA vs. OJ) design

building a factorial model

- we can start with three simple models
- grand mean model : toothGrowth ~ grand mean
- main effect 1: toothGrowth ~ dose
 - model = dose means
 - obtain $SS_{dose_model} = SS_{total} SS_{Y-\hat{Y}_{dose_model}}$
- main effect 2: toothGrowth ~ supp
 - model = supplement means
 - obtain $SS_{supp_model} = SS_{total} SS_{Y-\hat{Y}_{supp_model}}$

activity: compute the means

dose=0.5	dose=2	
7.98	26.14	
13.23	26.06	
	7.98	

difference $AA_{0.5mg} - AA_{2mg} = -18.16$ $OJ_{0.5mg} - OJ_{2mg} = -12.83$

difference of differences = interaction

 $(AA_{0.5mg} - AA_{2mg}) - (OJ_{0.5mg} - OJ_{2mg}) = -5.33$

AA_overall	17.06
OJ_overall	19.645
dose_0.5	10.605
dose_2	26.1

main effect of **supplement** $M_{OJ} - M_{AA} = 2.585$

main effect of **dose** $M_{0.5mg} - M_{2mg} = 15.495$

activity: build the models

- build the grand mean model
 - obtain SS_{total}
- build the **dose** model using dose means
 - obtain SS_{dosemodel}
- build the supplement model using supplement means
 - obtain SS_{suppmodel}

activity: build the models

- build the grand mean model
 - obtain $SS_{total} = 3056.29975$
- build the **dose** model using dose means
 - obtain $SS_{dose_{model}} = 2400.95025$
- build the supplement model using supplement means
 - obtain $SS_{supp_{model}} = 66.82225$

SStotal	3056.29975
	SS
supplement_model	66.82225
dose model	2400.95025

building a complex model

- next, we fit our more complex model
- interaction model: toothGrowth ~ dose + supp + (dose)(supp)
 - substitutes each value with the respective sub-mean of the factorial design
 - obtain $SS_{full_model} = SS_{total} SS_{Y-\hat{Y}_{full_model}} = SS_{total} SS_{error}$
- how much variance is explained by the interaction (SS_{interaction})?
 - $SS_{interaction} = SS_{full_model} SS_{dose_model} SS_{supp_model}$
- the interaction represents the part of the "full model" that is not explained by the simple models of only dose and only supplement

activity: build full model

- build full model using <u>all</u> sub-group means
 - $SS_{error} = ??$ (the error left over from the full model)
 - also called SS_{residuals}

-
$$SS_{full_model} = SS_{total} - SS_{error} = ??$$

- $SS_{interaction} = SS_{full_model} SS_{dose_model} SS_{supp_model}$
- $SS_{interaction} = ??$

activity: build full model

- build full model using <u>all</u> sub-group means
 - $SS_{error} = 517.505$ (the error left over from the full model)
 - also called SS_{residuals}
 - $SS_{full_model} = SS_{total} SS_{error} = 2538.79475$
 - $SS_{interaction} = SS_{full_model} SS_{dose_model} SS_{supp_model}$
 - $SS_{interaction} = 71.02225$

	SS
supplement_model	66.82225
dose_model	2400.95025
interaction	71.02225
residuals	517.505
SStotal	3056.29975

NHST for factorial ANOVA

testing significance (F-test)

 we conduct individual F-tests for each type of possible effect using the remaining error (SS_{residual}) from the <u>full model</u>

$$F(df_1, df_2) = \frac{MS_{model}}{MS_{error}} = \frac{SS_{model}/df_{model}}{SS_{error}/df_{error}}$$

- degrees of freedom
 - $df_{1i} = k_i 1$
 - $df_{interaction} = product of all df_{1i}$
 - $df_2 = n product of k_i$

n	k	term	df	
40				

n	k	term	
40	2 (AA vs. OJ)		
	2 (0.5 mg vs 2 mg)		

n	k	term
40	2 (AA vs. OJ)	supplement
	2 (0.5 mg vs 2 mg)	dose
		interaction
		residual

n	k	term	df	
40	2 (AA vs. OJ)	supplement	2-1 = 1	
	2 (0.5 mg vs 2 mg)	dose	2-1 = 1	
		interaction	1 x 1 = 1	
		residual	40 - (2*2) = 36	error or within

practice question

- For an experiment involving 2 levels of factor A and 3 levels of factor B with a sample of n = 5 in each treatment condition, what is the value for df_{within}?
 - 20
 - 24
 - 29
 - 30

practice question

- The results of a two-factor analysis of variance produce df = 2, 36 for the F-ratio for factor A and df = 2, 36 for the F-ratio for factor B. What are the df values for the AxB interaction?
 - 1, 36
 - 2,36
 - 3,36
 - 4,36

testing significance (F-test)

k		SS	df	MS	F_observed	F_critical	check	p_value
2	supplement_model	66.82225	1	66.82225	4.648459435	4.1132	TRUE	0.0378
2	dose_model	2400.95025	1	2400.95025	167.0210124	4.1132	TRUE	less than 0.0001
	interaction	71.02225	1	71.02225	4.940630525	4.1132	TRUE	0.0326
	residuals	517.505	36	14.37513889				
	SStotal	3056.29975						

post-hoc tests

- once the "overall" F-tests show that substantial variation is explained by some combination of independent variables, we can dive in and explore specific effects
- sometimes, researchers have specific hypotheses about main effects and/or the interaction(s)
- these hypotheses can be tested using pairwise ttests/one-way ANOVAs, but must be corrected for multiple comparisons

continuous IVs

- the same framework in general holds for interval/ratio-level independent variables
 - multiple regression: $Y = b_1X_1 + b_2X_2 + ... + a + error$
- here, the coefficients represent the change in Y as a function of the specific independent variable (X_i) when "controlling for" the effect of other variables
- just as the linear correlation is structurally equivalent to the slope of a line, *partial* correlations are structurally equivalent to the coefficients from a multiple regression
- interactions are products of the two variables (similar to covariance!)

multiple regression formula

- fitting a (multiple) regression model in Sheets / Excel
- LINEST(Y, range of X columns/predictors, TRUE, FALSE)
- interpreting coefficients of a multiple regression helps you understand the impact of specific variables
- Sheets example for mtcars

	А	В	С	D	E
1	ar	mpg (Y)	hp (X1)	wt (X2)	product (X3)
2	Mazda RX4	21	110	2.62	288.2
3	Mazda RX4 Wag	21	110	2.875	316.25
4	Datsun 710	22.8	93	2.32	215.76
5	Hornet 4 Drive	21.4	110	3.215	353.65
6	Iornet Sportabout	18.7	175	3.44	602

d (hp)(wt)	c (wt)	b (hp)	a
0.02784814832	-8.216624297	-0.120102091	49.80842343

next time

- **before** class

- watch: <u>Hypothesis Testing (Factorial ANOVA)</u> [33 min]
- *explore:* Problem Set 7!
- *post*: Data Around Us OR practice questions (class participation)

- during class

- miscellaneous data (repeated measures + non-parametric)

optional: building a complex model

what is our model's equation?		0	1
 toothGrowth ~ a + b (dose) + c (supp) + d (dose) (supplement) 		1	
- simple coefficients signify main effects (b and c)	dose	0.5mg	2mg
- product coefficients signify interactions			
- "intercept" (a) signifies the mean of toothGrowth when all other coefficients = 0	supp	AA	OJ
- NOTE: this is no longer a line!			

- what are the values of a, b, c, and d?

_

- nominal independent variables are converted to 0s and 1s ("dummy codes")
- intercept (a): dose and supp are both 0, i.e., predicted mean toothGrowth in the AA_{0.5mg} group
- b: dose = 1, supp = 0, i.e., change in toothGrowth from $AA_{0.5mg}$ to AA_{2mg}
- c: supp = 1, dose = 0, i.e., change in toothGrowth from $AA_{0.5mg}$ to $OJ_{0.5mg}$
- d: supp = 1, dose = 1, i.e., difference of differences, i.e., $(OJ_{0.5mg} OJ_{2mg}) (AA_{0.5mg} AA_{2mg})$
- this is called **dummy coding** or setting up **contrasts** in your model

optional: building a complex model

- "dummy coding" each factor
- then using LINEST
- provides you a linear model's equation
- see last table of <u>Sheets solution</u>!

=LINEST(B2:B41,F2:H41,TRUE,FALSE)

SUPP_DUMMY	DOSE_DUMMY	SUPP*DOSE	interaction	dose_0.5	supp_OJ	INTERCEPT
0	0	0	-5.33	18.16	5.25	7.98
0	0	0			AA-OJ 0.5	AA_0.5
0	0	0				
0	0	0				