

DATA ANALYSIS

Week 14: Chi-square tests

upcoming review sessions

- Sunday (Yanevith): $3.30 \mathrm{pm}-5 \mathrm{pm}$
- Tuesday (Whitt): $4.15 \mathrm{pm}-5.45 \mathrm{pm}$
- Wednesday (in class)
- Wednesday (Prof. Kumar): 2-5 pm
- Thursday (Prof. Kumar): 10-4 pm
- Thursday (Yanevith): 7.30 pm - 9 pm
- poll for submitting questions

14	F: April 26, 2024	W14 continued...
15	T: April 30, 2024	Problem Set 7 due / Opt-out Deadline
15	W: May 1, 2024	W15: Odds and Ends
15	T: May 2, 2024	Data Around Us / Practice Questions due
15	F: May 3, 2024	Conceptual Final (In Class)
16	T: May 7, 2024	Computational Final Computational due
16	T: May 7, 2024	Last Class Survey due
16	W: May 8, 2024	Wrapping Up! (Last Class)
17	T: May 14, 2024	PS7 Revisions due
17	M: May 14, 2024	ALL late work due

parametric vs. non-parametric tests

final hypothesis chart

chi-square tests

- chi-square goodness of fit test
- one nominal/ordinal variable
- asks whether observed distribution of responses matches hypothesized distribution
- chi-square test of independence
- two nominal/ordinal variables
- asks whether observed distribution of responses on one variable depends on responses on other variable

example: eye color

- eye color counts for 40 students
- can be represented in a bar graph or frequency distribution table
- counts typically converted to a table
- observed values/counts are then compared to expected values/counts via a ratio
- asking: how extreme are the differences between what is expected and what is observed?

	blue	brown	green	other
observed $\left(\mathrm{f}_{0}\right)$	12	21	3	4

chi-square goodness of fit test

- $\chi^{2}=\sum \frac{\left(f_{o}-f_{f}\right)^{2}}{f_{e}}$
- the "expected" frequencies form the null hypothesis $\left(H_{0}\right)$
- equal preference (all counts equal)
- known population (specific distribution)
- observed χ^{2} statistic is then compared to the expected distribution for a set degrees of freedom based on number of categories C
- $d f=C-1$

	blue	brown	green	other
observed $\left(\mathrm{f}_{0}\right)$	12	21	3	4
expected $\left(\mathrm{f}_{\mathrm{e}}\right)$	10	10	10	10
$\qquad f_{e}=$	$\frac{N}{C}$ for equal preference			

NHST for chi-square goodness of fit test

step 1: state the hypotheses

H_{0} : equal preference $O R$ known distribution
H_{1} : distribution does not match expected distribution

$$
\alpha=.05
$$

find $\chi^{2}{ }_{\text {critical }}$ based on right tailed test and degrees of freedom $d f=C-1$
(1) find observed frequencies f_{o}
(2) find expected frequencies f_{e} $f_{e}=\frac{N}{C}$ for equal preference $f_{e}=N\left(p_{k}\right)$ for expected proportions (3) compute $\chi^{2}{ }_{\text {observed }}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$
(4) find p-value for $\chi^{2}{ }_{\text {observed }}$
> step 4:
> make a decision!

check whether $\chi^{2}{ }_{\text {observed }}$ is beyond $\chi^{2}{ }_{\text {critical }}$ and p-value < . 05 . if so, reject null hypothesis!

chi-square goodness of fit test

- conduct the test
- $C=4$
- $d f=C-1=3$
- $\chi_{\text {critical }}^{2}(3)=7.8147$
$-\chi_{\text {observed }}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=21$
- p-value < . 0001
- APA reporting: A significant difference was observed in eye color distributions, χ^{2} (3, $n=$ 40) $=21, p<.0001$

Eye	
color	
(X)	f
Blue	12
Brown	21
Green	3
Other	4

	blue	brown	green	other
observed $\left(f_{o}\right)$	12	21	3	4
expected $\left(f_{e}\right)$	10	10	10	10

known distribution

Eye Color	U.S. Population	World Population
Gray and other	Less than 1%	Less than 1%
Green	9%	2%
Hazel/amber	18%	10%
Blue	27%	8% to 10%
Brown	45%	55% to 79%

- has eye color significantly changed in the US population since 2000?
- our hypothesis is no longer about equal preference, but instead about a known population distribution
- $f_{e}=N\left(p_{k}\right)$ for expected proportions
- $f_{e}($ blue $)=40(.27)=10.8$
- $f_{e}($ other $)=40(.18+.01)=7.6$

	blue	brown	green	other
observed $\left(\mathrm{f}_{\mathrm{o}}\right)$	12	21	3	4
expected $\left(\mathrm{f}_{\mathrm{e}}\right)$	10.8	18	3.6	7.6

$$
f_{e}=N\left(p_{k}\right) \text { for expected proportions }
$$

chi-square goodness of fit test

- conduct the test
- $C=4$
- $d f=C-1=3$
- $\chi_{\text {critical }}^{2}(3)=7.8147$
- $\chi^{2}{ }_{\text {observed }}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=2.438$
- p -value $=0.4865$
- APA reporting: Eye color distributions have not significantly changed since 2000,
$\chi^{2}(3, n=40)=2.43, p=.49$

Eye color (X)	f
Blue	12
Brown	21
Green	3
Other	4

	blue	brown	green	other
observed $\left(\mathrm{f}_{\mathrm{o}}\right)$	12	21	3	4
expected $\left(\mathrm{f}_{\mathrm{e}}\right)$	10.8	18	3.6	7.6

chi-square test for independence

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

OBSERVED frequencies		experienced alcohol-related problems		
		yes	no	
parents allowed alcohol use	allowed	71	9	
	not allowed	89	31	

chi-square test for independence

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

chi-square test for independence

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

OBSERVED frequencies		experienced alcohol-related problems		
		yes	no	
parents allowed alcohol use	allowed	71	9	
	not allowed	89	31	

chi-square test for independence

- we first count up the totals to get how many people were sampled and how many were in each level

OBSERVED frequencies		experienced alcohol-related yes		
parents allowed alcohol use	allowed	71	no	total
	not	89	31	120
	total	160	40	$\mathrm{~N}=200$

expected frequencies

- what proportion of students experienced problems?
- $160 / 200=.80$
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
- expected (allowed-yes) $=.80$ * $80=64$

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed alcohol use	allowed			80
	not allowed			120
	total	160	40	$N=200$
. 80			. 20	

expected frequencies

- what proportion of students experienced problems?
- $160 / 200=.80$
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
- expected (allowed-yes) $=.80$ * $80=64$

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed alcohol use	allowed	64	16	80
	not allowed			120
	total	160	40	$N=200$
. 80			. 20	

expected frequencies

- what proportion of students experienced problems?
- $160 / 200=.80$
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
- expected (not allowed-yes) $=.80 * 120=96$
- expected (not allowed-no) $=.20 * 120=24$

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed alcohol use	allowed	64	16	80
	not allowed			120
	total	160	40	$N=200$
. 80			. 20	

expected frequencies

- what proportion of students did NOT experience problems?
- $40 / 200=.20$
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
- expected (not allowed-yes) $=.80 * 120=96$
- expected (not allowed-no) $=.20 * 120=24$

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed alcohol use	allowed	64	16	80
	not allowed	96	24	120
	total	160	40	$N=200$
. 80			. 20	

NHST for chi-square test of independence

activity

- compute the expected frequencies

chi-square test

- $d f=(R-1)(C-1)$
- $d f=(2-1)(2-1)=1$
- $\chi_{\text {critical }}^{2}(1)=3.84$
- $\chi_{\text {observed }}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=6.38$
- p-value $=0.0115$

OBSERVED frequencies		experienced alcohol-related problems		
	yes	no	total	
parents allowed alcohol use	allowed	71	9	80
	not allowed	89	31	120
	total	160	40	$N=200$

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	
parents allowed alcohol use	allowed	64	16	80
	not allowed	96	24	120
		160	40	$N=200$

chi-square test: assumptions

- independence of observations (between-subject measurements)
- expected frequencies in each cell >5
- typically categories are merged if counts are low

	blue	brown	green	other
observed $\left(\mathrm{f}_{\mathrm{o}}\right)$	12	21	3	4
expected $\left(\mathrm{f}_{\mathrm{e}}\right)$	10.8	18	3.6	7.6

$$
f_{e}=N\left(p_{k}\right) \text { for expected proportions }
$$

