

DATA ANALYSIS

Week 14: Chi-square tests

upcoming review sessions

- Sunday (Yanevith): 3.30 pm 5 pm
- Tuesday (Whitt): 4.15 pm 5.45 pm
- Wednesday (in class)
- Wednesday (Prof. Kumar): 2 5 pm
- Thursday (Prof. Kumar): 10 4 pm
- Thursday (Yanevith): 7.30 pm 9 pm
- poll for submitting questions

14	F: April 26, 2024	W14 continued
15	T: April 30, 2024	Problem Set 7 due / Opt-out Deadline
15	W: May 1, 2024	W15: Odds and Ends
15	T: May 2, 2024	Data Around Us / Practice Questions due
15	F: May 3, 2024	Conceptual Final (In Class)
16	T: May 7, 2024	Computational Final Computational due
16	T: May 7, 2024	Last Class Survey due
16	W: May 8, 2024	Wrapping Up! (Last Class)
17	T: May 14, 2024	PS7 Revisions due
17	M: May 14, 2024	ALL late work due

parametric vs. non-parametric tests

parametric tests

- interval/ratio DVs
- involve estimating parameters
- assumptions about the underlying sampling distribution
- if assumptions are violated, these tests may not be appropriate

non-parametric tests

- assume no underlying distributions ("distribution-free")
- typically used for nominal/ordinal DVs that yield counts
- no assumptions about underlying population
- most parametric tests have a non-parametric alternative

final hypothesis chart

chi-square tests

- chi-square goodness of fit test
 - one nominal/ordinal variable
 - asks whether observed distribution of responses matches hypothesized distribution
- chi-square test of independence
 - two nominal/ordinal variables
 - asks whether observed distribution of responses on one variable depends on responses on other variable

example: eye color

- eye color counts for 40 students
- can be represented in a bar graph or frequency distribution table
- counts typically converted to a table
- observed values/counts are then compared to expected values/counts via a ratio
- asking: how extreme are the differences between what is expected and what is observed?

	blue	brown	green	other
observed (f _o)	12	21	3	4
expected (f_e)				

chi-square goodness of fit test

$$-\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

- the "expected" frequencies form the null hypothesis (*H*₀)
 - equal preference (all counts equal)
 - known population (specific distribution)
- observed χ² statistic is then compared to the expected distribution for a set degrees of freedom based on number of categories C

	blue	brown	green	other	
observed (f_o)	12	21	3	4	
expected (f_e)	10	10	10	10	
$f_e = \frac{N}{C}$ for equal preference					

NHST for chi-square goodness of fit test

chi-square goodness of fit test

- conduct the test
- *C* = 4
- df = C 1 = 3
- $\chi^2_{critical}(3) = 7.8147$

-
$$\chi^2_{observed} = \sum \frac{(f_o - f_e)^2}{f_e} = 21$$

- p-value < .0001
- APA reporting: A significant difference was observed in eye color distributions, χ² (3, n = 40) = 21, p < .0001

	blue	brown	green	other
observed (f _o)	12	21	3	4
expected (f_e)	10	10	10	10

known distribution

- has eye color significantly changed in the US population since 2000?
- our hypothesis is no longer about equal preference, but instead about a known population distribution
- $f_e = N(p_k)$ for expected proportions
- f_e (blue) = 40 (.27) = 10.8
- f_e (other) = 40 (.18 + .01) = 7.6

Eye Color	U.S. Population	World Population
Gray and other	Less than 1%	Less than 1%
Green	9%	2%
Hazel/amber	18%	10%
Blue	27%	8% to 10%
Brown	45%	55% to 79%

	blue	brown	green	other
observed (f _o)	12	21	3	4
expected (f_e)	10.8	18	3.6	7.6

 $f_e = N(p_k)$ for expected proportions

chi-square goodness of fit test

- conduct the test
- *C* = 4
- df = C 1 = 3
- $\chi^2_{critical}(3) = 7.8147$
- $\chi^2_{observed} = \sum \frac{(f_o f_e)^2}{f_e} = 2.438$
- p-value = 0.4865
- APA reporting: Eye color distributions have not significantly changed since 2000, χ² (3, n = 40) = 2.43, p = .49

	blue	brown	green	other
observed (f_o)	12	21	3	4
expected (f_e)	10.8	18	3.6	7.6

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

	OBSERVED frequencies		experienced alcohol-related problems		
			yes	no	
	parents allowed	allowed	71	9	
	alcohol use	not allowed	89	31	

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

- is parent-allowed alcohol use related to how many alcohol-related problems are experienced?
- typically, this is a situation where there is no clear IV/DV but a relationship needs to be tested
- note that variables are no longer interval/ratio: these are COUNTS

	OBSERVED frequencies		experienced alcohol-related problems		
			yes	no	
	parents allowed	allowed	71	9	
	alcohol use	not allowed	89	31	

 we first count up the totals to get how many people were sampled and how many were in each level

OBSERVED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed	71	9	80	
alcohol use	not allowed	89	31	120
	total	160	40	N = 200

- what proportion of students experienced problems?
 - 160 / 200 = .80
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
 - expected (allowed-yes) = .80 * 80 = 64
 - expected (allowed-no) = .20*80 = 16

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed	allowed			80
alcohol use	not allowed			120
	total	160	40	N = 200

.80

.20

- what proportion of students experienced problems?
 - 160 / 200 = .80
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
 - expected (allowed-yes) = .80 * 80 = 64
 - expected (allowed-no) = .20*80 = 16

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed	allowed	64	16	80
alcohol use	not allowed			120
	total	160	40	N = 200

.80

.20

- what proportion of students experienced problems?
 - 160 / 200 = .80
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
 - expected (not allowed-yes) = .80 * 120 = 96
 - expected (not allowed-no) = .20*120 = 24

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	total
parents allowed alcohol use	allowed	64	16	80
	not allowed			120
	total	160	40	N = 200
	•	.80	.20	•

- what proportion of students did NOT experience problems?
 - 40 / 200 = .20
- if problems experienced are not related to whether parents allowed alcohol use or not, then 80% of the students should experience problems and 20% shouldn't
 - expected (not allowed-yes) = .80 * 120 = 96
 - expected (not allowed-no) = .20*120 = 24

EXPECTED frequencies		experienced alcohol-related problems			
		yes	no	total	
parents allowed alcohol use	allowed	64	16	80	
	not allowed	96	24	120	
	total	160	40	N = 200	
		.80	.20	•	

NHST for chi-square test of independence

activity

- <u>compute the expected frequencies</u>

chi-square test

$$- df = (R - 1)(C - 1)$$

-
$$df = (2-1)(2-1) = 1$$

- $\chi^2_{critical}(1) = 3.84$

-
$$\chi^2_{observed} = \sum \frac{(f_o - f_e)^2}{f_e} = 6.38$$

- p-value = 0.0115

OBSERVED frequencies		experienced alcohol-related problems			
		yes	no	total	
parents allowed alcohol use	allowed	71	9	80	
	not allowed	89	31	120	
	total	160	40	N = 200	

EXPECTED frequencies		experienced alcohol-related problems		
		yes	no	
parents allowed alcohol use	allowed	64	16	80
	not allowed	96	24	120
		160	40	N = 200

chi-square test: assumptions

- independence of observations (between-subject measurements)
- expected frequencies in each cell > 5
- typically categories are merged if counts are low

	blue	brown	green	other
observed (f _o)	12	21	3	4
expected (fe)	10.8	18	3.6	7.6

 $f_e = N(p_k)$ for expected proportions