

DATA ANALYSIS

Week 14: Dependent Data

- Cumulative Final PRACTICE

logistics

- cumulative final on May $3^{\text {rd }}$ (next Friday)
- ALL practice materials are up on Canvas
- same format (total worth 20\% of final grade)
- conceptual (40 points)
- computational (60 points)
- 25% if you opt-out of PS7
- all videos up on course website

2 Weeks 1-5 Practice

2 Weeks 6-12 Practice

2 Weeks 13-15 Practice
= Practice Final (Conceptual)
40 pts
\otimes Practice Final (Computational) $巴$

14	W: April 24, 2024	W14: Miscellaneous Data
14	F: April 26, 2024	W14 continued...
15	T: April 30, 2024	Problem Set 7 due / Opt-out Deadline
15	W: May 1, 2024	W15: Odds and Ends
15	T: May 2, 2024	Data Around Us / Practice Questions due
15	F: May 3, 2024	Conceptual Final (In Class)
16	T: May 7, 2024	Computational Final Computational due
16	T: May 7, 2024	Last Class Survey due
16	W: May 8, 2024	Wrapping Up! (Last Class)
17	T: May 14, 2024	PS7 Revisions due
17	M: May 14, 2024	ALL late work due

sleep dataset

- data about "the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients"
- this dataset contains repeated observations from the same patient and therefore, the data are not independent
- also called a within-subject or withinparticipant design
- we have not covered any statistical tests that we can use to analyze such

final hypothesis chart

assuming independence

- how would we have proceeded if the data were independent?
- we have 2 groups of scores, so we could have conducted an independent groups t-test

$$
\begin{gathered}
t_{d f}=\frac{\text { sample statistic }(b)-\text { population parameter }(\beta)}{\text { standard error }}=\frac{\left(M_{2}-M_{1}\right)-0}{s_{M_{2}-M_{1}}} \\
s_{M_{2}-M_{1}}=\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}
\end{gathered}
$$

- we could also conduct the F-test where we substitute the group means and compare to the grand mean model

paired / dependent groups t-test

- similar idea but now we compute
difference scores for each participant
- $D=X_{A}-X_{B}$
- if the drug had no effect on a participant, what should the value of D be?
- compute the mean of these differences
- $M_{D}=\frac{\sum D}{n}$
- if the drug had no effect overall, what should M_{D} be?

hypothesis testing (paired t-test)

- step 1: state the hypotheses
- $\mathrm{H}_{0}: \mu_{D}=0$
- $\mathrm{H}_{1}: \mu_{D} \neq 0$
- step 2: set criteria for decision

$$
t_{d f}=t_{\text {critical }}
$$

- step 3: collect data

$$
t_{\text {observed }}=\frac{\text { sample statistic }\left(M_{D}\right)-\text { population parameter }\left(\mu_{D}\right)}{\text { standard error }}
$$

$$
t_{\text {observed }}=\frac{M_{D}-\mu_{D}}{S E}=\frac{M_{D}-\mu_{D}}{s_{M_{D}}}
$$

- step 4: make a decision!

NHST for two dependent groups (paired t-test)

activity: conduct the t-test

- sleep data
- find $t_{\text {critical }}(n-1)= \pm 2.2621$
- compute the differences for each participant
- compute $M_{D}=-1.58$
- compute $s_{M_{D}}=\frac{s_{D}}{\sqrt{n}}=0.388$
- compute $t_{\text {observed }}=\frac{M_{D}-\mu_{D}}{s_{M_{D}}}=-4.062$
- compute p-value $=0.0028$
- decide!

effect size for paired t-test

- effect sizes represent how extreme is the mean difference relative to the "standard" difference that is to be expected under the null hypothesis
- $d=\frac{\mu_{D}}{\sigma_{D}}$
- when the original population standard deviation is unknown, we estimate it using the sample standard deviation of mean differences
- estimated $d=\frac{M_{D}}{s_{D}}$

more than two groups

- when more than two levels of the independent variable have to be compared, we cannot use a paired/dependent groups t-test
- what have we done before in this situation?
- we conduct the F-test!
- we have $S S_{\text {total }}=S S_{\text {model }}+S S_{\text {error }}$
- we will account for additional variance explained due to the same participant being measured to ultimately reduce $S S_{\text {error }}$ further

self esteem data

- the self-esteem dataset in R contains results from an experiment comparing self-esteem scores from a group of participants who were all exposed to three different treatment conditions
- research question: are there differences in self-esteem scores across treatments?
- how do we start building a model?

repeated-measures F-test

- step 1: grand mean model
- compute grand mean $=M_{y}=5.2368$
- obtain $S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2}=123.65$
- step 2: treatment mean model
- get \hat{Y} by substituting treatment means
- $M_{t 1}=3.14, M_{t 2}=4.93, M_{t 3}=7.64$
- obtain $S S_{\text {treatment_error }}=\sum(Y-\hat{Y})^{2}=21.19$
- obtain
- $S S_{\text {treatment_model }}=S S_{\text {total }}-S S_{\text {treatment_error }}=$ 102.46

building a subject-level model

- our goal is to further reduce $S S_{\text {treatment_error }}$ by utilizing information about the subject
- we start by calculating a mean for each subject $M_{\text {subject }_{i}}$
- next, we look at how much we gain by using a subject-level mean relative to the grand mean
- $S S_{\text {subject }}=\sum k\left(M_{\text {subject }_{i}}-M_{y}\right)^{2}$
- k : number of levels of IV

factoring out $S S_{\text {subject }}$

- step 1: from grand mean model
- $S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2}=123.65$
- step 2: from drug mean model
- $S S_{\text {treatment_error }}=\sum(Y-\hat{Y})^{2}=21.19$
- $S S_{\text {treatment_model }}=S S_{\text {total }}-S S_{\text {treatment_error }}=102.46$
- step 3: subject-level model

$$
S S_{\text {total }}=123.65
$$

- $S S_{\text {subject }=\sum k\left(M_{\text {subject }_{i}}-M_{y}\right)^{2}=4.57}$
- step 4: remove this estimate from remaining error
- final $S S_{\text {error }}=S S_{\text {treatment_error }}-S S_{\text {subject }}=16.62373649$

$$
S S_{\text {total }}=123.65
$$

F table

- n : number of observations (data points)
$S S_{\text {subject_error }}=4.57$
- $n_{\text {subjects }}$: number of subjects or participants

	SS	df	MS	F	p-value
between-subjects (treatment)	102.46	$k-1=3-1=2$	51.23	55.47	$<.001$
within-subjects					
- subject error	4.57	$n_{\text {subjects }}-1=10-1=9$			
- residual error	16.62	$(k-1)\left(n_{\text {subjects }}-1\right)=$ $(2)(9)=18$	0.92		
total	123.65				

NHST for repeated measures ANOVA

RM-ANOVA assumptions

- interval/ratio dependent variable
- normality
- sphericity: the variances of the differences between all possible pairs of within-subject conditions are equal
- Mauchly's test is typically performed to test for sphericity

ANOVA limitations

- require simple designs, complete data, and normal residuals
- not equipped to handle missing data
- difficult to accommodate differing number of repeats/trials
- cannot capture nested/clustered designs

mixed models

- linear/generalized mixed effects models consider the variability due to:
- missing data
- categorical/continuous IVs and DVs
- unbalanced designs
- clustered designs (no collapsing into means)
- think of them as the parent models from which special cases such as t-tests and ANOVAs are derived
- different 'lines/curves’ are fit for each individual and for each item, with their own slope and intercept,
 instead of "averaging" across everyone

mixed effects models

- are appropriate when data are nested - when several units or levels of analysis are possible and their separate and joint influences need to be considered
- common alternative terms are multilevel models, random coefficient models, and hierarchical linear models
- data structures suitable for mixed models arise in a wide variety of common research problems
- classes within schools within states
- trials within subjects within age groups

bonus content

- the following slides describe how the F-test would be conducted for the sleep data with two within-subject conditions
- NOTE: as we saw, you can do a paired t-test for these data but the same ideas of F-test will also apply here and the F-test is doable here too

F-test for sleep data

- let's start building our model(s)
- step 1: grand mean model
- compute grand mean $=M_{y}=1.54$
- obtain $S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2}=77.368$
- step 2: drug mean model

- get \hat{Y} by substituting drug means
- $M_{\text {drug } A}=0.75, M_{\text {drugB }}=2.33$
- obtain $S S_{\text {drug_error }}=\sum(Y-\hat{Y})^{2}=64.886$
- obtain $S S_{\text {drug_model }}=S S_{\text {total }}-S S_{\text {error }}=12.482$

F-test for sleep data

- let's start building our model(s)
- step 1: grand mean model
- compute grand mean $=M_{y}=1.54$
- obtain $S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2}=77.368$
- step 2: drug mean model
- get \hat{Y} by substituting drug means

$$
-M_{d r u g A}=0.75, M_{\text {drug } B}=2.33
$$

- obtain $S S_{\text {drug_error }}=\sum(Y-\hat{Y})^{2}=64.886$
- obtain $S S_{\text {drug_model }}=S S_{\text {total }}-S S_{\text {error }}=12.482$

building a subject-level model

- our goal is to further reduce $S S_{\text {error }}$ by utilizing information about the subject that is implicit in our drug model
- we start by calculating a mean for each subject $M_{\text {subject }_{i}}$
- next, we build a model that substitutes each value (Y_{i}) with the subject-level mean ($M_{\text {subject }_{i}}$)
- essentially, we are looking at how much we gain by using building a model at the level of the subject
- we do this for ALL subjects across ALL groups in our data and then look at how much "error" is explained by this subject-level model relative to the grand mean

$$
-S S_{\text {subject }}=\sum n\left(M_{\text {subject }_{i}}-M_{y}\right)^{2}
$$

factoring out $S S_{\text {subject }}$

$$
S S_{\text {total }}=77.38
$$

- step 1: from grand mean model
- $S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2}=77.368$
- step 2: from drug mean model
- $S S_{\text {drug_error }}=\sum(Y-\hat{Y})^{2}=64.886$
- $S S_{\text {drug_model }}=S S_{\text {total }}-S S_{\text {error }}=12.482$
- step 3: subject-level model

- step 4: remove this estimate from remaining $S S_{\text {error }}$
- final $S S_{\text {error }}=S S_{\text {drug_error }}-S S_{\text {subject_error }}=6.808$

$$
S S_{\text {total }}=77.38
$$

F table

- n : number of observations (data points)
- $n_{\text {subjects }}$: number of subjects or participants

	SS	df	MS	F	p-value
between-subjects (drug)	12.482	$k-1=2-1=1$	12.482	16.50	.0028
within-subjects					
- subject error	58.08	$n_{\text {subjects }}-1=10-1=9$			
- residual error	6.808	$(k-1)\left(n_{\text {subjects }}-1\right)=9$	0.756		
total	77.38				

next time

- before class
- watch: Dependent Groups t-test [6 min]
- watch: Repeated Measures ANOVA [16 min]
- work on: Problem Set 7!
- post: Data Around Us OR practice questions (class participation)
- during class
- chi-square tests

