

DATA ANALYSIS

Week 15: Final Review!

final exam logistics

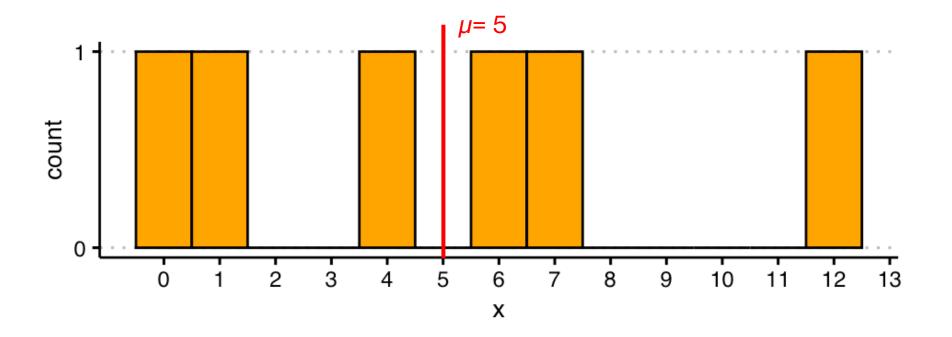
- you will be **provided**:
 - hypothesis chart
 - test table (with ALL dfs and APA reporting example)
- you can **bring**:
 - ONE help sheet

One DV, one nominal IV

Ratio/interval level measurements **Dependent** observations (repeated measures)

test	degrees of freedom	process
dependent	df = n - 1	$\bullet H_0: \mu_D = 0$
groups t-test		$\bullet H_1: \mu_D \neq 0$
100000 2	n: number of	• find $t_{critical}$ based on one vs. two tailed test,
IV has only	participants	df , and $lpha$ level
two levels		• compute $s_{M_D} = \frac{s_D}{\sqrt{n}}$
		• compute $t_{observed} = \frac{M_D - \mu_D}{s_{M_D}}$
		• find p-value for $t_{observed}$
		• check whether $t_{observed}$ is beyond $t_{critical}$ and
		p-value $< \alpha$. if so, reject null hypothesis!
		• APA reporting example (PS7): There is a
		significant difference in pain tolerance between
		repeating swear words ($M = 69.4$ seconds)
		versus neutral words ($M = 55.4$ seconds), $t(9) =$
		3.91, p = .004. The means indicate that swear
		words increased the time that people were able
		to keep their hand in ice water.

upcoming review/office hours

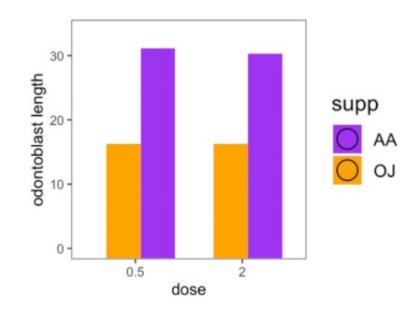

- Wednesday (Prof. Kumar): 2.30 5 pm
 - Kanbar 217
- Thursday (Prof. Kumar):
 - Kanbar 217
 - 10 11.30 am
 - 12.30 4 pm
- Thursday (Yanevith): 7.30 pm 9 pm
 - Mills 127

14	F: April 26, 2024	W14 continued
15	T: April 30, 2024	Problem Set 7 due / Opt-out Deadline
15	W: May 1, 2024	W15: Odds and Ends
15	T: May 2, 2024	Data Around Us / Practice Questions due
15	F: May 3, 2024	Conceptual Final (In Class)
16	T: May 7, 2024	Computational Final Computational due
16	T: May 7, 2024	Last Class Survey due
16	W: May 8, 2024	Wrapping Up! (Last Class)
17	T: May 14, 2024	PS7 Revisions due
17	M: May 14, 2024	ALL late work due

review of concepts

- standard deviation and standard error
- similarities and differences in statistical tests
- repeated measures ANOVA
- degrees of freedom + F-tests

visually estimating standard deviation



type I and type II error

- you are evaluating whether time spent on TikTok in the week leading up to an exam has a significant effect on exam performance. What would represent a "false alarm" given this scenario?

factorial design

- in our factorial ANOVA model that we used in class, we evaluated the effects of two factors, supplement dosage (0.5 mg or 2 mg) and the type of supplement (ascorbic acid or orange juice) on the odontoblast length of guinea pigs. What conclusion could you draw about the data if the plot looks like this?

