

DATA ANALYSIS

Week 1: Getting Started

welcome!

Abhilasha Kumar (she/her)

instructor

Whitt Dodge (he/him)

learning assistant

Yanevith Peña (she/her)

learning assistant

agenda for today

- meet & greet
- course & canvas walkthrough
- general intuitions about statistics

a problem and an ice breaker

- in groups of 3-4, discuss:
 - your names, pronouns, class years, and something boring about yourself
 - should test scores (e.g., SAT/ACT) be used for college admissions?
 - what are some pros and cons of test scores?
 - how would you tackle this problem if you were a policymaker at Bowdoin?
- report back your conversations

a problem

- get back into the same groups to discuss:
 - what is the information being presented in this graph?
 - what is main message the graph is trying to communicate?
 - what are some questions a policymaker may have about this graph?

Notes: Data is for students who entered college from 2017 to 2022, excluding 2020. • Source: Opportunity Insights and Friedman, Sacerdote and Tine (2024) • By Ashley Wu

what is this course about?

- an introduction to the statistical procedures commonly used [by psychologists] to describe, analyze, and interpret data
- learning goals
 - understand data, uncertainty, and the logic behind statistical thinking
 - evaluate scientific and non-scientific work by applying a statistical toolkit to specific claims and questions
 - communicate through numbers, graphs, and scientific writing
 - [empowering you with transferable and highly valued skills]

course outline

understand

lectures

activities

evaluate

quizzes

discussions

communicate

problem sets

reflections

your words!

How would you describe your knowledge of statistics? 29 responses

- I have no formal knowledge of statistics
- I know the conceptual basics of descriptive statistics (e.g., calculating means, histograms, etc.)
- I know the conceptual basics of inferential statistics (e.g., t-tests, ANO...
- I have learned about how to perform basic statistical analyses (descriptive...
- I am somewhere between no knowledge and conceptual basics of inferential st...

so many feelings...

where does the course live?

- course website:
 - https://teaching-me.github.io/data-analysis/
 - course schedule and policies
 - syllabus, slides, and schedule
- canvas
 - announcements
 - ALL submissions & discussions
 - grades + Q&A
- textbook
 - Gravetter, F. J., & Wallnau, L. B. (2017). Statistics for the Behavioral Sciences (10th ed.). Belmont, CA: Thomson Wadsworth.

assessment formats

- quizzes

- open book, NOT open person
- on Canvas, 2 attempts: average score is recorded

- problem sets

- can choose to opt-in or opt-out at three points
- submissions are on Canvas, a combination of Google Docs + Sheets

- exams

- midterms: not cumulative, final: cumulative
- quiz-like in-class component + problem set-like take-home

discussion board: data around us!

- will remain active all semester
- contributes to class participation + extra credit
- sample post:
 - [screenshot]: should be visible in the thread!
 - type of data: continuous (interval/ratio scale) SAT and GPA
 - this is a line plot that suggests that there is a linear relationship between SAT/ACT scores and GPA, and this relationship is similar for students who come from advantaged or disadvantaged schools
 - they likely fit a linear regression model predicting GPA using SAT/ACT scores, with different models for the type of high school
 - I think this is informative/interesting but I have questions: XYZ

Notes: Data is for students who entered college from 2017 to 2022, excluding 2020. Source: Opportunity Insights and Friedman, Sacerdote and Tine (2024) By Ashley Wu

course syllabus: questions

- find a group of 5!
- review the syllabus (5 minutes):
- come back with any questions!

About me: I am a cognitive scientist who is fascinated by how humans think, learn, and communicate. My work involves conducting psychological experiments to understand different

general class format

- you are expected to do some reading before class
 - textbook is an aid BUT not the bible
 - video tutorials are useful to watch before and after Friday's class
- slides will be uploaded right before class
 - hands-on format in most classes
 - minimize looking over in advance so you can be present!
- class time will be devoted to
 - conceptual content
 - learning by doing
- each week, these things are due (prep-try-apply)
 - textbook chapters/videos (prep)
 - weekly quiz (try)
 - problem sets (try / apply / usually every week)

canvas walkthrough

- canvas will be mainly used for:
 - announcements
 - make sure you have notifications turned on!
 - go into account settings on canvas to check this
 - all submissions
 - weekly quizzes
 - problem sets
 - canvas discussion board (data around us)
 - meme submission
 - keeping track of flex days

how to study for this class

- utilize evidence-based effective study strategies:
 - retrieval practice: quiz yourself, ask-a-friend, flash cards
 - elaborative encoding: ask "why" questions, try problem sets, work with data!
 - spaced practice: space out your studying, do not cram!
- but...your attitudes toward effort also matter
 - a <u>"growth mindset"</u>
 - read the assigned chapters/readings **before** class
 - come prepared to class for engagement
 - minimize distractions
 - plan early for assignments and assessments

the course is designed to support you

- retrieval practice

- class participation via activities/reflections
- weekly quizzes on each learning module

- elaborative encoding

- exercises that force you to learn by doing
- discussion boards that connect class content to real life

- spaced practice

- later concepts build on early concepts
- problem sets involve integrating old and new content
- exams are cumulative

a weekly breakdown

if I was a student, I would...

prep & class	prep & review	review & class	◆ Tiodis				
			quiz & problem set	quiz & problem set	problem set	prep for next week	
Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	
2 hours problem set revision	1.5 hour	2 hours		quiz due	problem set due	1.5 hours ← →	

3 hours

- USE A CALENDAR!!
- keep track of deadlines a week ahead of time
- use retrieval practice / elaborative encoding strategies
- make high-quality notes in class
- revisit notes and do some retrieval practice / reflection on Thursday/Friday
- complete quiz on Sunday
- allocate Saturday/Sunday/Monday to problem set
- think about a possible meme and/or discussion post on Saturday/Sunday

when you have thoughts and questions

- office hours: these are YOUR hours!
 - Prof. Kumar (Kanbar 217)
 - in-person: Wednesdays, 2 pm 4 pm
 - via Zoom: Thursdays, 2 pm 4 pm
 - Whitt: Mondays, 7 pm 8.30 pm (Kanbar 101)
 - Yanevith: Sundays, 3.30 pm 5 pm (Kanbar 101)
- meetings by appointment
- anonymous feedback surveys each month

reasons to come to office hours (and whose)

- Prof. Kumar

- Qs about material / concepts / assignments
- Qs about course policies/assessments/grades
- reflections on the classroom experience

- learning assistants

- Qs about problem sets
- informal feedback about course pace
- Qs about Canvas deadlines/due dates
- tech troubleshooting

- I will try my very best to create an inclusive environment for all of you
 - we are all different and that is a strength
 - we also exist beyond the classroom!
- but...nobody is perfect!
 - my style may not match your style
 - I am always listening and learning so PLEASE reach out!

sheets 101: demonstration

- any dataset typically has rows and columns
 - each row (typically) denotes a single observation / data point
 - each column (typically) denotes the measure being observed
- doing math in Sheets is super easy
 - double click on an empty cell:
 - o add two numbers: =2+3
 - subtract two numbers: =2-3
 - multiply two numbers: =2*3
 - divide two numbers: 2/3
 - adding values from existing columns
 - =A2+B2 OR SUM(A2,B2)

quick note on math notation

- Σ: sigma / summation
- ΣX = adding all values in column X
- ΣX^2 = squaring all values in column X and then adding them
- $(\Sigma X)^2$ = adding all values in column X and then squaring the sum

next time

- **before** class
 - prep: Chapter 1 + Appendix A from textbook + Google Sheets video
 - *prep*: Google Sheets video (see website)
- during class
 - statistical thinking / what are data??