

DATA ANALYSIS

Week 1: Statistical Thinking / What are data?

logistics

Week 1 Quiz

Due Jan 29 at 11:59pm	Points 10	Questions 10	
Available Jan 26 at 3pm - Fe	b 1 at 11:59pm	Time Limit 30 Minutes	Allowed Attempts 2

- revised quiz policy
 - quizzes will now remain open from Fridays at 3 pm
 - <u>now due on Monday</u> but they will be available until Thursday, 11.59 pm to incorporate flex days (3 max)
- pre-class survey
 - fill out by end of this week, you can still get extra credit!
 - and learn about your attitudes towards statistics!
- problem set submission video updated
- <u>Al policy</u>: use at your own risk!

Problem Set 1 (summarizing & means)

Attempt 1 due date: Feb 5, 2024

PS1: Solution Template [Use this template to create your own solution sheet]
 PS1 worksheet template [Use this template to create your own worksheet]

Please watch this video that describes how to submit problem sets

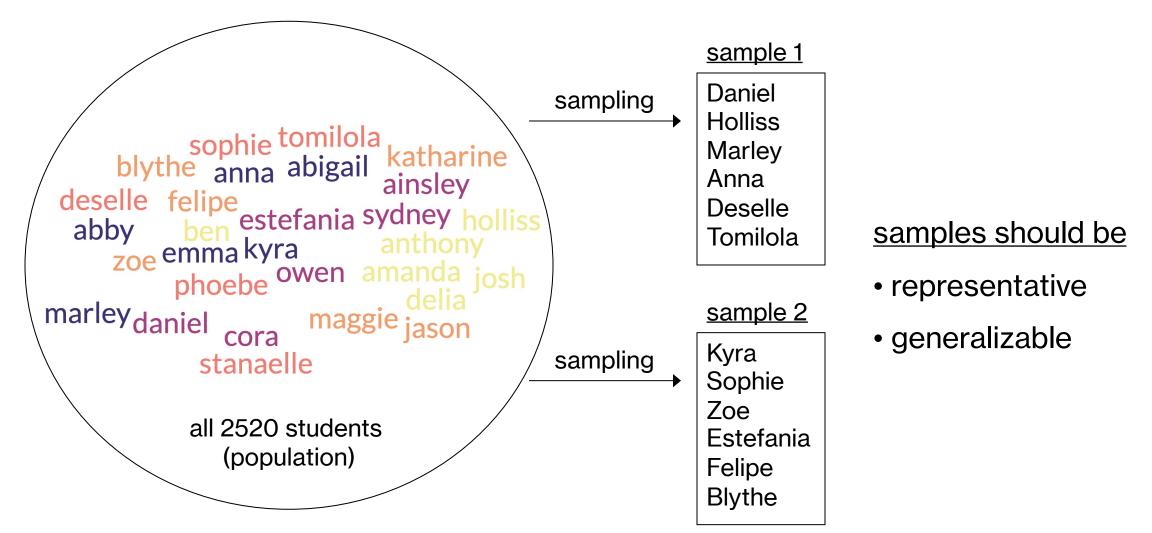
Total number of problems (including sub-parts): 32 75% cutoff for a reasonable first attempt: 24

- Chapter 1 Problems: 8, 10, 18, 20, 22
- Chapter 2 Problems: 4, 6, 12, 14, 18,
- Chapter 3 Problems: 10, 12, 14, 20, 22

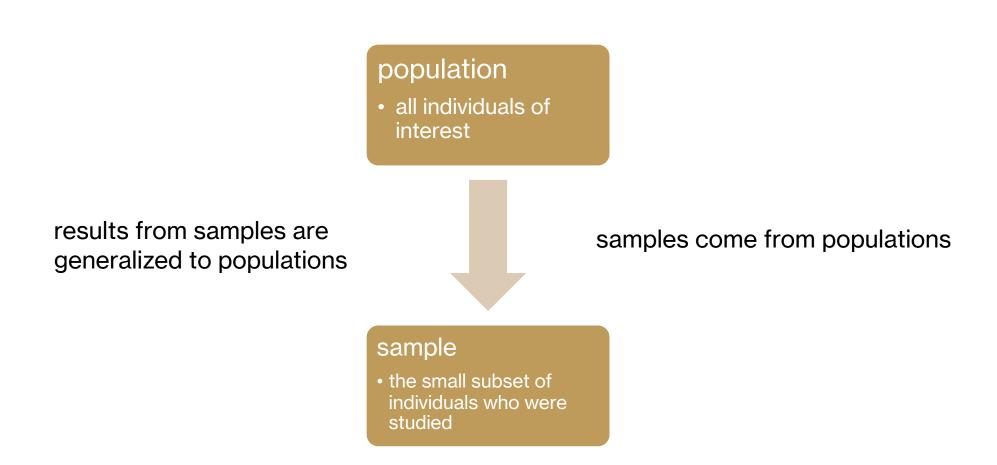
introduce statistical thinking

today's agenda

define population / sample / data

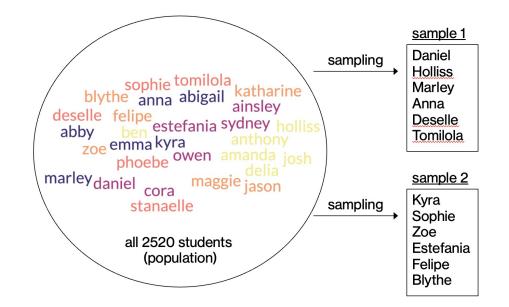


discuss scales of measurement / reliability

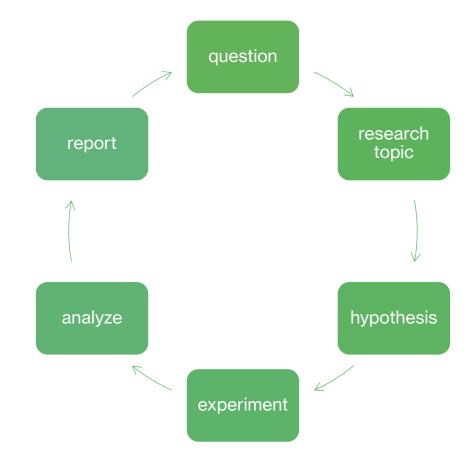

what is statistical thinking?

- understanding the complex world in simple terms
 - summarization + uncertainty
- different from other forms of thinking, e.g., human intuition, heuristics, etc.
- three key uses: describe (the world), decide (something), predict (something)
- key concepts:
 - learning from data: we let the data guide us
 - aggregation: we "summarize" raw data
 - uncertainty: we assess how well our raw data maps on to the summarization
 - sampling: we acknowledge that our data are samples from a population

populations and samples



populations and samples


parameters, statistics, sampling error

- parameter: something that describes a population
- statistic: something that describes a sample
- sampling error: the discrepancy between the sample statistic and the true population parameter it is estimating
- to reduce sampling error:
 - use a sufficiently large sample
 - use random selection: selecting individuals from the population at random for your sample to create an unbiased sample

the scientific method

- the scientific method is a method for acquiring knowledge by making predictions, carrying out experiments to test those predictions, and making inferences based on the observed outcomes
- variables and constants
 - variable: a characteristic that changes across conditions
 - constant: a characteristic that is fixed across conditions
- to make inferences, we manipulate a variable of interest, and observe the effect on an outcome variable, holding all other variables constant

samples in research

experimental research

• test a manipulation to establish a cause-and-effect relationship between two variables

non-experimental research

- quasi-experimental research
 - no actual manipulation, groups/variables defined due to natural variations
- descriptive research
 - single or collection of variables are observed and summarized
- correlational research
 - at least two variables are observed to determine a relationship

research terminology

- independent variable (what is being manipulated?)
 - levels denote the types of "conditions" that a participant could be assigned to
- dependent variable (what is being measured?)
- design type (within- or between-subjects/participants)
 - were all participants exposed to all <u>levels</u> of the independent variable?
- key ideas for controlling other extraneous variables:
 - random assignment
 - matching/holding constant
 - control conditions

activity (think-pair-share)

- a research scenario will be presented
- think about your answers
- pair up and discuss your answers
- share out

scenario #1

- A researcher is testing the effect of alcohol on memory performance. He gives one group of subjects a bottle of vodka, and another a nonalcoholic substance that tastes like vodka.
 Each group then learns a list of words, and attempts to recall them. Number of words correctly recalled for each group is recorded
 - what kind of study is it (experimental / non-experimental)?
 - independent and dependent variables?
 - design type (within- or between-participant)?
 - what would the data look like?

scenario #2

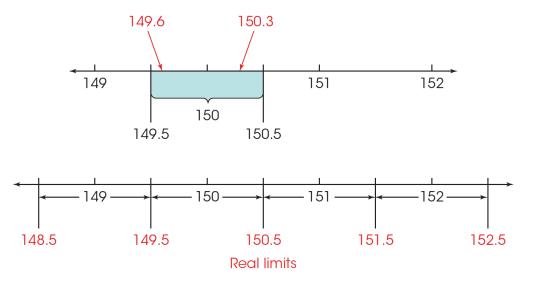
- A social psychologist is interested in gender differences in math performance. She randomly selects men and women from Bowdoin and has them solve a series of equations. Number of equations correctly solved for each participant is recorded.
 - what kind of study is it (experimental / non-experimental)?
 - independent and dependent variables?
 - design type (within- or between-participant)?
 - what would the data look like?

scenario #3

- A clinical psychologist is interested in the effectiveness of a new anti-depression drug. He collects depression scores from a group of individuals diagnosed with depression at time
 1. All individuals then take the drug, and are measured again a month later at time 2.
 - what kind of study is it (experimental / non-experimental)?
 - independent and dependent variables?
 - design type (within- or between-participant)?
 - what would the data look like?

from samples to data

- samples provide us with information
- data *are* measurements or observations obtained from a sample
 - a dataset is a collection of measurements or observations
 - a datum is a single measurement or observation



scales of measurement

- data can be measured in several ways:
 - qualitative (put things into categories) vs. quantitative (assign numbers) data
 - discrete: separate, indivisible values. no values can exist between two neighboring values; integer scales
 - continuous: an infinite number of possible values fall between any two observed values.
 hypothetically divisible into an infinite number of fractional parts.
- how data are measured determines:
 - what kinds of mathematical operations can be applied
 - what kind of statistical computations can be computed

real limits for continuous data

- only applies to continuous data
- the real limit separates two adjacent scores, and is located halfway between the scores
 - each score has an upper real limit (UL) and a lower real limit (LL)
 - lower limit for 150 is 149.5; upper limit is 150.5

scales of measurement

NOIR	each value has a unique meaning	a value has a sense of quantity, some values are larger, some are smaller	units along the scale of measurement are equal to one another	the scale has a true meaningful zero point
	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal				
<u>o</u> rdinal				
<u>i</u> nterval				
<u>r</u> atio				

scales of measurement

NOIR	each value has a unique meaning	a value has a sense of quantity, some values are larger, some are smaller	units along the scale of measurement are equal to one another	the scale has a true meaningful zero point
	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal				
<u>o</u> rdinal		\checkmark		
<u>i</u> nterval				
<u>r</u> atio				

NOIR	each value has a unique meaning	a value has a sense of quantity, some values are larger, some are smaller	units along the scale of measurement are <u>equal to</u> one another	the scale has a true meaningful zero point
	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal				
<u>o</u> rdinal				
<u>i</u> nterval				
<u>r</u> atio				

activity

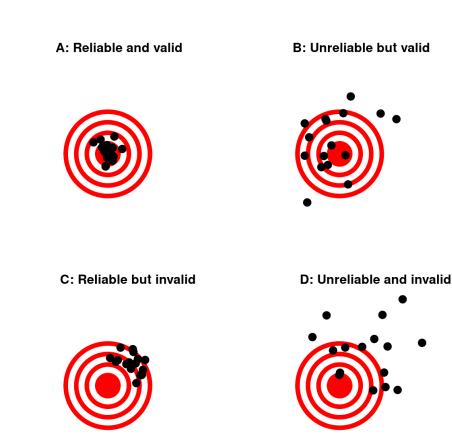
- assign a data type to each variable (NOIR) and whether it is discrete / continuous

variable	NOIR	discrete/continuous
numbers on basketball jerseys		
sizes of Starbucks orders		
weight		
calendar years		
IQ scores		

NOIR	each value has a unique meaning	a value has a sense of quantity, some values are larger, some are smaller	units along the scale of measurement are <u>equal to</u> one another	the scale has a true meaningful zero point
	identity	magnitude	equal intervals	absolute zero
<u>n</u> ominal				
<u>o</u> rdinal				
<u>i</u> nterval				
<u>r</u> atio				

activity

- assign a data type to each variable (NOIR) and whether it is discrete / continuous


variable	NOIR	discrete/continuous
numbers on basketball jerseys	nominal	discrete
sizes of Starbucks orders	ordinal	discrete
weight	ratio	continuous
calendar years	interval	continuous
IQ scores	interval	continuous

data in scientific abstracts

- table groups
- go to the <u>abstract document</u> and read over the abstract
- make note of (you will need to make a copy to edit the document):
 - independent variable(s) and data type(s)
 - dependent variable(s) and data type(s)
- predicted graph of results?
- key takeaway?

reliability and validity

- reliability: consistency of measurements
 - test-retest reliability
 - inter-rater reliability
- validity: are we measuring what we think we are measuring?
 - face validity: reality check, does it make sense?
 - construct validity: is it related to other measurements in a logical manner? <u>convergent</u> vs. <u>divergent</u> validity
 - **predictive** validity: can it predict future data?

big takeaways from today

- jot down the key takeaways from today
 <u>without</u> looking at the slides/notes someplace
 you can revisit
- retrieval practice + elaborative encoding

next time

- **before** class

- try: week 1 quiz
- *apply*: problem set #1 (chapter 1 problems)
- *apply*: optional meme / discussion board post
- prep: Chapter 2/3 from textbook + videos
- during class
 - why/how do we summarize data?
 - how do we "explain" data?

Week 1 Quiz

Due Jan 29 at 11:59pm	Points 10	Questions 10	
Available Jan 26 at 3pm	- Feb 1 at 11:59pm	Time Limit 30 Minutes	Allowed Attempts 2

Problem Set 1 (summarizing & means)

Attempt 1 due date: Feb 5, 2024

PS1: Solution Template [Use this template to create your own solution sheet]
 PS1 worksheet template [Use this template to create your own worksheet]

Please watch this video that describes how to submit problem sets

Total number of problems (including sub-parts): 32 75% cutoff for a reasonable first attempt: 24

- Chapter 1 Problems: 8, 10, 18, 20, 22
- Chapter 2 Problems: 4, 6, 12, 14, 18,
- Chapter 3 Problems: 10, 12, 14, 20, 22