

DATA ANALYSIS

Week 2: Fitting Models to Data (Central Tendencies & Errors/Variation)

logistics

- my office hours are from 11.45 2 pm this Friday
- problem set 1 / opt-out deadline: Feb 3

recap

Before Tuesday

- Watch: <u>Summarizing Data</u>. (See Google Sheets Solution Here)
- Read Chapter 2 from the Gravetter & Wallnau (2017) textbook.

Before Thursday

- Watch: <u>Central Tendencies</u>. (<u>See Google Sheets Solution Here</u>)
- Read Chapter 3 from the Gravetter & Wallnau (2017) textbook.

After Thursday

• See <u>Apply</u> section.

W2 activity 1 results

today's agenda

fitting models to data

what is a model?

- when you hear the word model, what do you understand?

what is a model?

- a model is a *representation* or *version* of something
- within statistics, a model is a mathematical representation of data

Dictionary Definitions from Oxford Languages · Learn more mod·el /'mäd(ə)l/ noun 1. a three-dimensional representation of a person or thing or of a proposed structure, typically on a smaller scale than the original. "a model of St. Paul's Cathedral" replica representation mock-up dummy imitation (~ Similar: copy 2. a system or thing used as an example to follow or imitate. "the law became a model for dozens of laws banning nondegradable plastic products" archetype prototype stereotype type version style mold ~ Similar:

data = model + error

- the goal of statistics is to find a simple explanation to the observed data, i.e., build a model of the data that approximates/explains it as well as possible
- what is a *good* model? one that represents the data really well
- best model?
- how do we start building models? we could start with a single estimate: one number that tells us something about our data

a dataset of geyser eruptions

- Old Faithful geyser in Yellowstone National Park
- <u>dataset</u> records eruption time and waiting time in minutes [from R]
- let's build a model of waiting time, i.e., how can I summarize the distribution of waiting times?

eruptions	waiting
3.6	79
1.8	54
3.333	74
2.283	62
4.533	85
2.883	55
4.7	88
3.6	85

model 1: mode

- the most "common" / frequent value in the dataset
- useful in describing the shape of a distribution

model 1: mode

- the most "common" / frequent value in the dataset
- how do we find it? by building a frequency table!
- sheets formula: =MODE(range)
- what is our statistical model?
- data = mode + error

waiting	COUNT of waitin	g
		0
	43	1
	45	3
	46	5
	47	4
	48	3
	49	5
	50	5
	51	6
	52	5
	53	7

\bullet JX = Mode(B2:B2/3)						
А	В	С				
eruptions	waiting	Mode				
3.6	79	78				
1.8	54					

is the mode a good model?

- data = mode + error
 - error = data mode
- each data point will produce its own error relative to the model
- how do we calculate the error?
 - subtract the mode from each data point
- distribution of errors?
- sum of errors = total error?
- "average" error? =AVERAGE(data range)

• <u>J</u> X =	- <u>B</u> Z-\$C\$Z		
A	В	С	D
eruptions	waiting	Mode	data-mode
3.6	79	78	1
1.8	54		-24

А	В	С	D	E
eruptions	waiting	Mode	data-mode	Avg_mode_error
3.6	79	78	1	-7.102941176
1.8	54		-24	•

model 2 = mean

 the arithmetic mean is the sum of scores divided by the number of scores: a balance point

- how do we find it?
 - add up all scores and divide by total number of observations
 - population mean: $\mu = \frac{\sum X}{N}$
 - sample mean: $\overline{X} = M = \frac{\sum X}{n}$
 - sheets formula: =AVERAGE(data range)

some properties of the mean

$$u = \frac{\sum X}{N}$$

- the calculation of the mean includes **all** values, so changing a score will change the mean
- adding a new score or removing a score will usually change the mean
 - unless the new score is the mean itself
- adding/subtracting/multiplying/dividing a constant value from each score will lead to applying the same operation to the mean

W2 activity 2: part 1/2/3

- Go to course website under Week 2 > Try > W2 Activity 1
- part 1: complete the activity **on your own**
- part 2: justify your answer to a peer
- part 3: re-attempt the activity

why is the error zero?!

- the mean is a balance point in the sense that "errors"/"distances" above the mean must have the same total as the errors below the mean
- the mean, by definition, is the middle point where errors above and below the mean cancel each other out!

why is the error zero?! a proof

- average error = average (data – mean)

$$\frac{\sum_{i=1}^{n} (X_i - M)}{n}$$
$$= \frac{\sum_{i=1}^{n} X_i}{n} - \frac{\sum_{i=1}^{n} M}{n}$$
$$= M - \frac{\sum_{i=1}^{n} M}{n}$$
$$= M - \frac{n M}{n}$$
$$= M - M$$
$$= 0$$

re-calculating errors

- positive and negative errors canceling out is problematic: it de-emphasizes/washes out the differences between data points and the model and suggests that the mean produces no error!
- we could take the absolute value of errors? square the errors?
- turns out, squaring has several mathematical advantages over taking the absolute values

65.65765571 × •	100 /0 . Ψ	∕° ← →	Deruum	
В	С	D	E	F
waiting	Mean	error from mean	Average_mean_	squared_errors
79	70.89705882	8.102941176	0	=D2*D2
54		-16.89705882		285.5105969
74		3.102941176		9.628243945
62		-8.897058824		79.15765571

re-calculating errors

- after squaring, how do we get a single estimate of the error?
- sum of squared errors (SSE or SS)
 - depends on the number of observations
- mean of squared errors (MSE)
 - not in original units of the data
- root mean squared error (RMSE)
 - error is in same units as the original data!

65.65765571 × =D2*D2	100 /δ - ψ	∕* ← →	Deruum	
В	С	D	E	F
waiting	Mean	error from mean	Average_mean_	squared_errors
79	70.89705882	8.102941176	0	=D2*D2
54		-16.89705882		285.5105969
74		3.102941176		9.628243945
62		-8.897058824		79.15765571

re-calculating errors for the mean

- sum of squared errors (SSE or SS): $\sum_{i=1}^{N} (X_i - \mu)^2$

- mean of squared errors (MSE):
$$\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} = \frac{SS}{N}$$

- root mean squared error (RMSE):
$$\sqrt[2]{\frac{\sum_{i=1}^{N}(X_i - \mu)^2}{N}} = \sqrt{MSE}$$

questions?

 groups of 3-4, review the <u>"squared_errors_for_mean" sheet</u> and see what questions are coming up!

re-calculate errors for the mode

- previously, we calculated the average "error" for the mode without squaring
- we could now calculate SS, MSE, and RMSE for the mode
- between the mode and the mean, which is the better model?
- which model has the lowest RMSE?
- can we do better??

model	RMSE
mode	15.32
mean	13.57

model 3: median

- divides the distribution exactly in half: value of the median is equivalent to the 50th percentile
- how do we find it?
 - put the scores in order (ascending or descending) and find the middle value
- if N is odd, the median is the middle score (when the scores are in order)
- if N is even, the median is the mean of the middle two scores (when the scores are in order)

mean vs. median

- both are balance points, but in different ways
- the mean is trying to find the point that balances the errors/distances above and below it, but it may not always be at the "center" of the scores; easily swayed by extremes, because it cares about magnitude
- the median is not worried about the magnitude and is literally trying to find the center in terms of the scores

is the median a good model?

- we could now calculate SS, MSE, and RMSE for the median
- between the median, mode and the mean, which is the better model?
- which model has the lowest RMSE?

model	RMSE
mode	15.32
mean	13.57
median	14.50

when to use which measure?

- mean, median, mode are together called measures of central tendency
- mean
 - most common, includes all scores, generally our "best" bet if we have no other variables
- median
 - extreme scores / skewed distribution
 - undetermined values / open-ended distribution
- mode
 - nominal scale, only the mode can be used
 - if the "most typical case" is to be identified. mean and median often produce fractional values

Person	Time (Min.)	Number of Pizzas (<i>X</i>)	f
1	8	5 or more	3
2	11	4	2
3	12	3	2
4	13	2	3
5	17	1	6
6	Never finished	0	4

mean vs. median vs. mode

- symmetric distributions
 - single mode: mean = median = mode
 - multiple modes: mean = median
- skewed distributions
 - positive skew: mode < median < mean
 - negative skew: mean < median < mode

W2 Activity 3: part 1/2/3

- part 1: complete the activity **on your own**
- part 2: justify your answer to a peer
- part 3: re-attempt the activity

variability

- describing data via a measure of central tendency tells only half the story
- we also want to know the spread of the data and how well our "model" fits this spread
- we already did this by estimating the errors!
 - variance = mean of squared errors (MSE)!
 - standard deviation = (square) root mean squared error (RMSE)!
- more next time!

next time

- **before** class

- try: week 2 quiz
- watch: Central Tendencies video
- *submit*: problem set #1 (follow video tutorial for submission guidelines)
- *apply*: optional meme / discussion post
- prep: read Chapter 4
- during class
 - understanding variability better