

DATA ANALYSIS

Week 2: Fitting Models to Data (Central Tendencies \& Errors/Variation)

recap

- what we covered:
- summarizing data (frequency tables / ranks \& percentiles)
- visualizing data (distributions, histograms, bar graphs)
- your to-dos:
- prep: video tutorial: Summarizing data
- apply: problem set 1 (chapter 2 problems)
- prep: read Chapter 3 from the Gravetter \& Wallnau (2017) textbook.

today's agenda

what is a model?
fitting models to data

what is a model?

- when you hear the word model, what do you understand?

data = model + error

- the goal of statistics is to find a simple explanation to the observed data, i.e., build a model of the data that approximates/explains it as well as possible
- what is a good model? one that represents the data really well
- best model?
- how do we start building models? we could start with a single estimate: one number that
 tells us something about our data

a dataset of geyser eruptions

- Old Faithful geyser in Yellowstone National Park
- dataset records eruption time and waiting time in minutes [from R]
- how many rows and columns in this dataset?
- let's build a model of waiting time, i.e., how can I summarize the distribution of waiting times?

eruptions		waiting
	3.6	

$1.8 \quad 54$
3.333

74
$2.283 \quad 62$
$4.533 \quad 85$
$2.883 \quad 55$
4.7 88
3.6

85

model 1: mode

- the most "common" / frequent value in the dataset
- useful in describing the shape of a distribution

Histogram of waiting

(a)

(b)

(c)

model 1: mode

- the most "common" / frequent value in the dataset
- how do we find it? by building a frequency table!
- sheets formula: =MODE(range)
- what is our statistical model?
- data = mode + error

is the mode a good model?

- data = mode + error
- error = data - mode
- each data point will produce its own error relative to the model
- how do we calculate the error?
- subtract the mode from each data point
- distribution of errors?
- sum of errors = total error?
- "average" error? =AVERAGE(data range)

questions?

- groups of 3-4, review the "mode" sheet and see what questions are coming up!

model 2 = mean

- the arithmetic mean is the sum of scores divided by the number of scores: a balance point
- how do we find it?
- add up all scores and divide by total number of observations
- population mean: $\mu=\frac{\sum X}{N}$
- sample mean: $\bar{X}=M=\frac{\sum X}{n}$

- sheets formula: =AVERAGE(data range)

some properties of the mean

$$
\mu=\frac{\sum X}{N}
$$

- the calculation of the mean includes all values, so changing a score will change the mean
- adding a new score or removing a score will usually change the mean
- unless the new score is the mean itself
- adding/subtracting/multiplying/dividing a constant value from each score will lead to applying the same operation to the mean

is the mean a good model?

- data = mean + error
- error = data - mean
- each data point (datum) will produce its own error relative to the model
- calculate the error?
- subtract the mode from each data point
- histogram of errors?
- "average" error from the mean? =AVERAGE(range)
- 0?!

Histogram of error from mean

why is the error zero?!

- the mean is a balance point in the sense that "errors"/"distances" above the mean must have the same total as the errors below the mean

- the mean, by definition, is the middle point where errors above and below the mean cancel each other out!

why is the error zero?! a proof

- average error = average (data - mean)

$$
\begin{aligned}
& \frac{\sum_{i=1}^{n}\left(X_{i}-M\right)}{n} \\
& =\frac{\sum_{i=1}^{n} X_{i}}{n}-\frac{\sum_{i=1}^{n} M}{n} \\
& =M-\frac{\sum_{i=1}^{n} M}{n} \\
& =M-\frac{n M}{n} \\
& =M-M \\
& =0
\end{aligned}
$$

re-calculating errors

- positive and negative errors canceling out is problematic: it de-emphasizes/washes out the differences between data points and the model and suggests that the mean produces no error!
- we could take the absolute value of errors? square the errors?
- turns out, squaring has several mathematical advantages over taking the absolute values

re-calculating errors

- after squaring, how do we get a single estimate of the error?
- sum of squared errors (SSE or SS)
- depends on the number of observations
- mean of squared errors (MSE)
- not in original units of the data
- root mean squared error (RMSE)
- error is in same units as the original data!

$65.65765571 \times$ -	$10 \cup 10$ \| $\boldsymbol{*}$	$\cdots \stackrel{\cdots}{ } \quad \leftarrow$	¢く \| -u'uni..	U
= $22 *$ D 2				
B	c	D	E	F
waiting	Mean	error from mean	Average_mean_	squared_errors
79	70.89705882	8.102941176	0	=D2*D2
54		-16.89705882		285.5105969
74		3.102941176		9.628243945
62		-8.897058824		79.15765571

re-calculating errors for the mean

- sum of squared errors (SSE or SS): $\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}$
- mean of squared errors (MSE): $\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}=\frac{S S}{N}$
- root mean squared error (RMSE): $\sqrt[2]{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=\sqrt{M S E}$

questions?

- groups of 3-4, review the "squared_errors_for_mean" sheet and see what questions are coming up!

re-calculate errors for the mode

- previously, we calculated the average "error" for the mode without squaring
- we could now calculate SS, MSE, and RMSE for the mode
- between the mode and the mean, which is the better model?
- which model has the lowest RMSE?
- can we do better??

model	RMSE
mode	15.32
mean	13.57

model 3: median

- divides the distribution exactly in half: value of the median is equivalent to the 50th percentile
- how do we find it?
- put the scores in order (ascending or
 descending) and find the middle value
- if N is odd, the median is the middle score (when the scores are in order)
- if N is even, the median is the mean of the middle two scores (when the scores are in order)

mean vs. median

- both are balance points, but in different ways
- the mean is trying to find the point that balances the errors/distances above and below it, but it may not always be at the
 "center" of the scores; easily swayed by extremes
- the median is not worried about the errors and is literally trying to find the center in terms of the scores

is the median a good model?

- we could now calculate SS, MSE, and RMSE for the median
- between the median, mode and the mean, which is the better model?
- which model has the lowest RMSE?

model	RMSE
mode	15.32
mean	13.57
median	14.50

when to use which measure?

- mean, median, mode are together called measures of central tendency
- mean
- most common, includes all scores, generally our "best" bet if we have nothing else available
- median
- small number of extreme scores
- undetermined values / open-ended distribution
- mode
- nominal scale, only the mode can be used
- if the "most typical case" is to be identified. mean and median often produce fractional values

mean vs. median vs. mode

- symmetric distributions
- single mode: mean = median = mode
- multiple modes: mean = median
- skewed distributions
- positive skew: mode < median < mean
- negative skew: mean < median < mode

(a)

(b)

variability

- describing data via a measure of central tendency tells only half the story
- we also want to know the spread of the data and how well our "model" fits this spread
- we already did this by estimating the errors!
- variance = mean of squared errors (MSE)!
- standard deviation = (square) root mean squared error (RMSE)!
- more next time!

next time

- before class
- try: week 2 quiz
- watch: Central Tendencies video
- submit: problem set \#1 (follow video tutorial for submission guidelines)
- apply: optional meme / discussion post
- prep: read Chapter 4
- during class
- understanding variability better

