

DATA ANALYSIS

Week 3: Variability

logistics: quiz 2 / problem set \#1

- quiz 2
- bar graph / histogram question was regraded
- problem set \#1
- going forward, please submit a PDF of your document with link to sheet as before

logistics: midterm 1

Feb 23 rd 2024
(Friday)

today's agenda

variability

z-scores

recap of fitting models

- models are fit to data: data $=$ model + error
- we fit "central tendencies"/models to the data (mean / median / mode)
- we calculated "errors"/distances between the data and our model(s)
- sum of squared errors (SSE or SS): $\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}$
- mean of squared errors (MSE): $\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}=\frac{S S}{N}$
- root mean squared error (RMSE): $\sqrt[2]{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=\sqrt{M S E}$

variability

visual inspection

- we can estimate/calculate the mean
- the farthest score is 5 points away
- the closest score is 1 point away
- on average, scores are likely $\frac{5+1}{2}$ away $=3$ points away
- what is our actual estimate of standard
 deviation for these scores?

$$
\sqrt[2]{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=\sqrt{\frac{25+1+1+4+9}{5}}=2.83
$$

activity

- 6 scores: $12,0,1,7,4$, and 6
- calculate the mean
- visually estimate the standard deviation

activity

- mean $=5$ points
- farthest score is 7 points away
- closest score is 1 point away
- sd estimate $=7+1 / 2=4$
- actual sd $=\sqrt[2]{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=\sqrt{\frac{49+25+16+4+1+1}{6}}$

$=\sqrt{\frac{96}{6}}=4$

activity

- $5,5,5,3,3,3,3,6,7,1,0$
- calculate the mean
- visually estimate the standard deviation

activity

- mean is 3.7
- farthest score is 3.7 points away
- closest score is 0.7 point away
- sd estimate $=3.7+0.7 / 2=2.2$
- but more scores are on the closer side so slightly less than 2.2 is likely

- actual sd $=\sqrt[2]{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=2.00$

SSE: definitional vs. computational formulas

$$
\begin{gathered}
\begin{array}{c}
\sum(X-\mu)^{2}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N} \\
\begin{array}{c}
\text { definitional } \\
\text { formula }
\end{array} \\
\sum(X-\mu)^{2}=\sum\left(X^{2}+\mu^{2}-2 X \mu\right)=\sum X^{2}+\sum \mu^{2}-2 \sum X \mu=\sum X^{2}+N \mu^{2}-2 \mu \sum X= \\
=\sum X^{2}+N \mu^{2}-2 \frac{\sum X}{N} \sum X=\sum X^{2}+N \mu^{2}-2 \frac{\left(\sum X\right)^{2}}{N}=\sum X^{2}+N \frac{\sum X}{N} \frac{\sum X}{N}-2 \frac{\left(\sum X\right)^{2}}{N}=\sum X^{2}+\frac{\left(\sum X\right)^{2}}{N}-2 \frac{\left(\sum X\right)^{2}}{N} \\
=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}
\end{array} \\
\begin{array}{l}
\text { onlational for your curiosity, }
\end{array} \\
\begin{array}{l}
\text { stick to definitional formula } \\
\text { for this class: easier to } \\
\text { remember and understand }
\end{array}
\end{gathered}
$$

questions?

from populations to samples

- we have been talking about central tendencies and spread for populations, but we hardly ever have access to the populations!
- sample means (M) contribute to sample-based estimates of variance (s^{2}) and standard deviation (s)
- sampling tends to focus more on "typical" scores, so we tend to miss out on extreme scores from the population

a demonstration: small population

- consider an island population $(\mathrm{N}=6)$ where people were asked to report how many trees they own on the island
- 2 people owned no trees, 2 people owned 3 trees each, and 2 people owned 9 trees each!

B2	- $\mathrm{fx}_{\mathrm{X}}=\mathrm{A} 2-\$$ A\$10				
	A	B	c	D	E
1	X	data-mu	squared errors	MSE (variance)	RMSE (sd)
2	0	-4	16	14	3.741657387
3	0	-4	16		
4	3	-1	1		
5	3	-1	1		
6	9	5	25		
7	9	5	25		
8					
9	Mu		SSE		
10	4		84		

- we calculate the mean and standard deviation of trees owned for this population

a demonstration: small samples

- now we take all possible samples of size 2 from this population
- calculate the mean M for each sample
- average M from all possible samples is equal to the population M : mean is an unbiased statistic!

| sample number | X1 | X2 | M |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 0 | 0 |
| 2 | 0 | 3 | 1.5 |
| 3 | 0 | 9 | 4.5 |
| 4 | 3 | 0 | 1.5 |
| 5 | 3 | 3 | 3 |
| 6 | 3 | 9 | 6 |
| 7 | 9 | 0 | 4.5 |
| 8 | 9 | 3 | 6 |
| 9 | 9 | 9 | 9 |
| | | | |
| | | | M_avg |
| | | | 4 |

B2	\checkmark	$f x=$
	A	
1	X	
2	0	
3	0	
4	3	
5	3	
6	9	
7	9	
8		
9	Mu	
10		4

a demonstration: small samples

- calculate the variance (MSE) of each sample
$=\frac{\sum_{i=1}^{N}\left(X_{i}-M_{\text {sample }}\right)^{2}}{n}$
- average variance is LOWER than the population variance: variance is a biased statistic!

sample number	X1	X2	M	variance_biased
1	0	0	0	0
2	0	3	1.5	2.25
3	0	9	4.5	20.25
4	3	0	1.5	2.25
5	3	3	3	0
6	3	9	6	9
7	9	0	4.5	20.25
8	9	3	6	9
9	9	9	9	0
			M_avg	var_biased_avg
			4	7

MSE (variance) RMSE (sd)
143.741657387

a demonstration: small samples

- we need to penalize the sample variance so that it accurately estimates the population variance
- we need to make variance (MSE) a larger number

$$
\frac{\sum_{i=1}^{N}\left(X_{i}-M_{\text {sample }}\right)^{2}}{n}
$$

- we can decrease the the denominator: divide by ($n-1$) instead

$$
s^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-M_{\text {sample }}\right)^{2}}{n-1}
$$

- also called the Bessel's correction

sample number	X1	X2	M	variance_biased	variance_unbiased
1	0	0	0	0	0
2	0	3	1.5	2.25	4.5
3	0	9	4.5	20.25	40.5
4	3	0	1.5	2.25	4.5
5	3	3	3	0	0
6	3	9	6	9	18
7	9	0	4.5	20.25	40.5
8	9	3	6	9	18
9	9	9	9	0	0
			M_avg	var_biased_avg	var_unbiased_avg
			4	7	14

why ($n-1$)? degrees of freedom

- df = number of values that are free to vary in the calculation of a statistic
- for populations, we use the population mean (μ) to compute deviation scores (X - μ)
- however, for samples, μ is unknown and we estimate it using our sample mean M
- computing M restricts the scores that went into the calculation
- why? because changing even a single score would change M
- if M is known, you only need to know $n-1$ scores to find the last score
- only $n-1$ scores are free to vary once M is known

an example

- if the mean of quiz scores for 5 students is 9 points and four students' scores are $8,10,8$, and 9 , what is the score of the fifth student?

populations vs. samples

populations

population variance

$$
\left(\sigma^{2}\right)=\frac{\Sigma(X-\mu)^{2}}{N}=\frac{S S}{N}
$$

population standard deviation $(\sigma)=$
$\sqrt{\frac{\sum(X-\mu)^{2}}{N}}=\sqrt{\frac{S S}{N}}$

samples

sample variance $\left(s^{2}\right)=$

$$
\frac{\sum(X-M)^{2}}{n-1}=\frac{S S}{n-1}=\frac{S S}{d f}
$$

sample standard deviation $(s)=$

$$
\sqrt{\frac{\sum(X-M)^{2}}{n-1}}=\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{S S}{d f}}
$$

questions?

- explore the variability sheet

locating scores within distributions

- we have used means and standard deviations as ways to summarize distributions
- but, if you wanted to know how well you performed on a test, how would you apply this knowledge of the distribution to know how well you did?
- means and standard deviations together can be informative in describing a data point's relationship to the distribution

z-scores

- z-scores are a way to understand how far away a score is from the mean, in standard deviation units

$$
z=\frac{X-\mu}{\sigma}
$$

- calculate "distances" or deviation scores and divide by the standard deviation
- z-score is essentially a ratio that is asking: how extreme is my score relative to the average distance I can expect based on this distribution?
- any distribution can be transformed into a

 distribution of z-scores

calculating z-scores

$$
z=\frac{X-\mu}{\sigma}
$$

- six scores, calculate $\mu, \boldsymbol{\sigma}$, and z

calculating z-Scores
 $$
z=\frac{X-\mu}{\sigma}
$$

- six scores, calculate $\mu, \boldsymbol{\sigma}$, and z

X	mu	X-mu	squared_errors	MSE	RMSE	Z
0	3	-3	9	4	2	-1.5
6		3	9			1.5
5		2	4			1
2		-1	1			
3		0	0			-0.5
2		-1	1			0

solution sheet

next time

- before class
- watch: Variability and z-scores
- prep: chapter 6 (specific sections - see course website)
- try: problem set \#2 (chapter 4 and 5 problems)
- during class
- deep dive into the normal distribution

