

DATA ANALYSIS

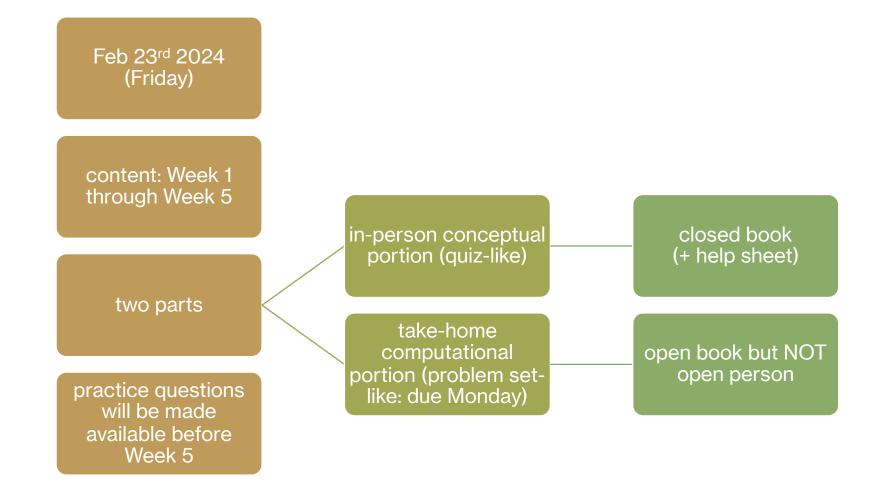
Week 3: Variability

logistics: quiz 2 / problem set #1

- quiz 2

- bar graph / histogram question was regraded
- problem set #1
 - going forward, please submit a PDF of your document with link to sheet as before

logistics: midterm 1



today's agenda

z-scores

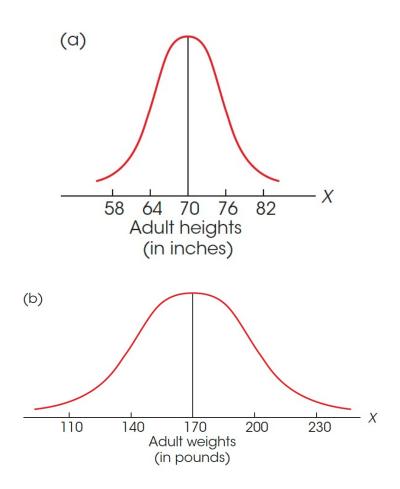
recap of fitting models

- models are fit to data: data = model + error
- we fit "central tendencies"/models to the data (mean / median / mode)
- we calculated "errors"/distances between the data and our model(s)
 - sum of squared errors (SSE or SS): $\sum_{i=1}^{N} (X_i \mu)^2$
 - mean of squared errors (MSE): $\frac{\sum_{i=1}^{N} (X_i \mu)^2}{N} = \frac{SS}{N}$

- root mean squared error (RMSE):
$$\sqrt[2]{\frac{\sum_{i=1}^{N}(X_i - \mu)^2}{N}} = \sqrt{MSE}$$

variability

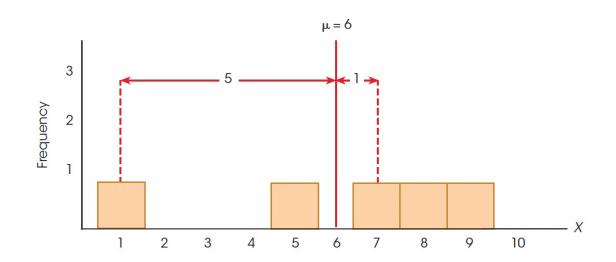
- variability describes the spread of scores in a distribution
- measures of variability
 - range = maximum minimum
 - variance = mean squared error from the mean (MSE or σ^2) = average of **squared** distances/errors from the mean
 - standard deviation = root mean squared error from the mean (RMSE or *σ*) = average <u>distance</u>/error from the mean **in original units**
- variance and standard deviation are defined relative to the mean, i.e., how well does the mean fit the data?



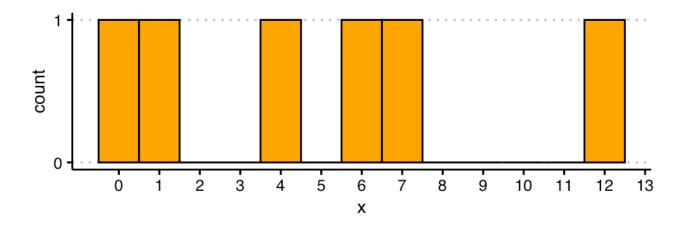
visual inspection

- we can estimate/calculate the mean
- the farthest score is 5 points away
- the closest score is 1 point away
- on average, scores are likely $\frac{5+1}{2}$ away = 3 points away
- what is our actual estimate of standard deviation for these scores?

$$\sqrt[2]{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} = \sqrt{\frac{25 + 1 + 1 + 4 + 9}{5}} = 2.83$$



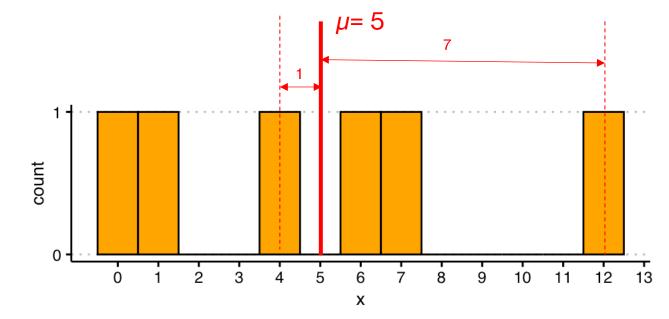
- 6 scores: 12, 0, 1, 7, 4, and 6
- calculate the mean
- visually estimate the standard deviation



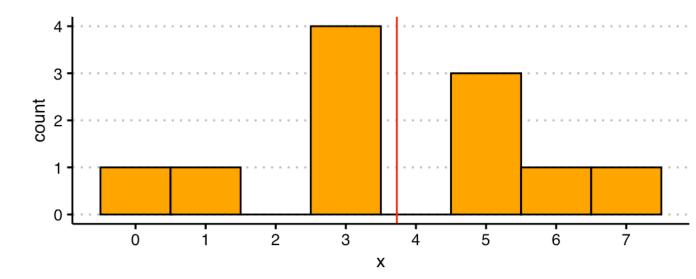
- mean = 5 points
- farthest score is 7 points away
- closest score is 1 point away
- sd estimate = 7 + 1 / 2 = 4

- actual sd =
$$\sqrt[2]{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} = \sqrt{\frac{49 + 25 + 16 + 4 + 1 + 1}{6}}$$

= $\sqrt{\frac{96}{6}} = 4$

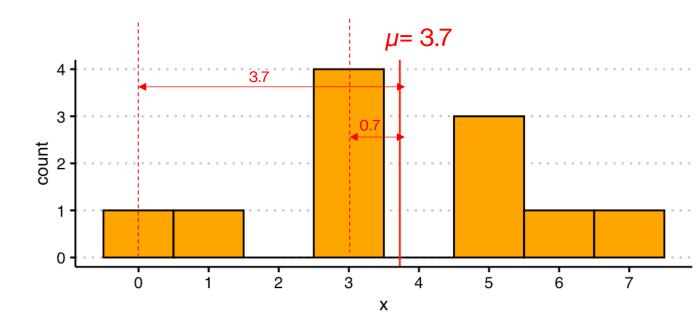


- 5,5,5, 3,3,3,3,6, 7, 1, 0
- calculate the mean
- visually estimate the standard deviation



- mean is 3.7
- farthest score is 3.7 points away
- closest score is 0.7 point away
- sd estimate = 3.7 + 0.7 / 2 = 2.2
- but more scores are on the closer side so slightly less than 2.2 is likely

- actual sd =
$$\sqrt[2]{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} = 2.00$$



SSE: definitional vs. computational formulas

$$\sum (X - \mu)^2 = \sum X^2 - \frac{(\sum X)^2}{N}$$

definitional formula computational formula

$$\sum (X - \mu)^2 = \sum (X^2 + \mu^2 - 2X\mu) = \sum X^2 + \sum \mu^2 - 2\sum X\mu = \sum X^2 + N\mu^2 - 2\mu \sum X =$$

$$= \sum X^2 + N\mu^2 - 2 \frac{\sum X}{N} \sum X = \sum X^2 + N\mu^2 - 2 \frac{(\sum X)^2}{N} = \sum X^2 + N \frac{\sum X}{N} \frac{\sum X}{N} - 2 \frac{(\sum X)^2}{N} = \sum X^2 + \frac{(\sum X)^2}{N} - 2 \frac{(\sum X)^2}{N}$$

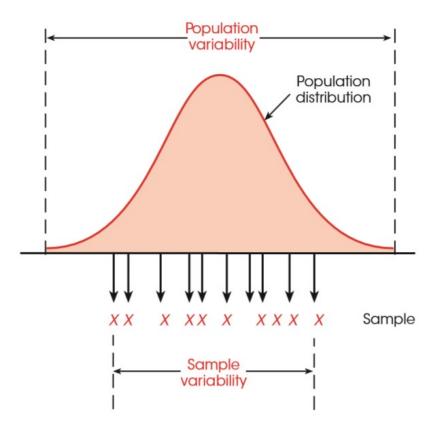
$$= \sum X^2 - \frac{(\sum X)^2}{N}$$
convergence out on the for your out of the equation.

only for your curiosity, stick to definitional formula for this class: easier to remember and understand

questions?

from populations to samples

- we have been talking about central tendencies and spread for populations, but we hardly ever have access to the populations!
- sample means (*M*) contribute to sample-based estimates of variance (s²) and standard deviation (s)
- sampling tends to focus more on "typical" scores, so we tend to miss out on extreme scores from the population
- as a result, samples tend to <u>underestimate</u> population variability



a demonstration: small population

- consider an <u>island population</u> (N = 6) where people were asked to report how many trees they own on the island
- 2 people owned no trees, 2 people owned
 3 trees each, and 2 people owned 9 trees
 each!
- we calculate the mean and standard deviation of trees owned for this population

B2	B2 $\checkmark \int \mathbb{K} = A2 - A = A2$								
	A	В	С	D	E				
1	X	data-mu	squared errors	MSE (variance)	RMSE (sd)				
2	0	-4	16	14	3.741657387				
3	0	-4	16						
4	3	-1	1						
5	3	-1	1						
6	9	5	25						
7	9	5	25						
8									
9	Mu		SSE						
10	4		84						

a demonstration: small samples

- now we take all possible samples of size 2 from this population
- calculate the mean M for each sample
- average M from all possible samples is equal to the population M: mean is an unbiased statistic!

sample number	X1	X2	М
1	0	0	0
2	0	3	1.5
3	0	9	4.5
4	3	0	1.5
5	3	3	3
6	3	9	6
7	9	0	4.5
8	9	3	6
9	9	9	9
			M_avg
			4

B2	✓ f _X =
	A
1	X
2	0
3	0
4	3
5	3
6	9
7	9
8	
9	Mu
10	4

a demonstration: small samples

- calculate the variance (MSE) of each sample

$$=\frac{\sum_{i=1}^{N}(X_{i}-M_{sample})^{2}}{n}$$

 average variance is LOWER than the population variance: variance is a biased statistic!

sample number	X1	X2	М	variance_biased
1	0	0	0	0
2	0	3	1.5	2.25
3	0	9	4.5	20.25
4	3	0	1.5	2.25
5	3	3	3	0
6	3	9	6	9
7	9	0	4.5	20.25
8	9	3	6	9
9	9	9	9	0
			M_avg	var_biased_avg
			4	7

 MSE (variance)
 RMSE (sd)

 14
 3.741657387

a demonstration: small samples

- we need to penalize the sample variance so that it accurately estimates the population variance
- we need to make variance (MSE) a larger number

$$\frac{\sum_{i=1}^{N} (X_i - M_{sample})^2}{n}$$

we can decrease the the denominator:
 divide by (n – 1) instead

$$s^{2} = \frac{\sum_{i=1}^{N} (X_{i} - M_{sample})^{2}}{n-1}$$

- also called the Bessel's correction

sample number	X1	X2	Μ	variance_biased	variance_unbiased
1	0	0	0	0	(
2	0	3	1.5	2.25	4.5
3	0	9	4.5	20.25	40.5
4	3	0	1.5	2.25	4.5
5	3	3	3	0	(
6	3	9	6	9	18
7	9	0	4.5	20.25	40.5
8	9	3	6	9	18
9	9	9	9	0	(
			M_avg	var_biased_avg	var_unbiased_avg
			4	7	14

 MSE (variance)
 RMSE (sd)

 14
 3.741657387

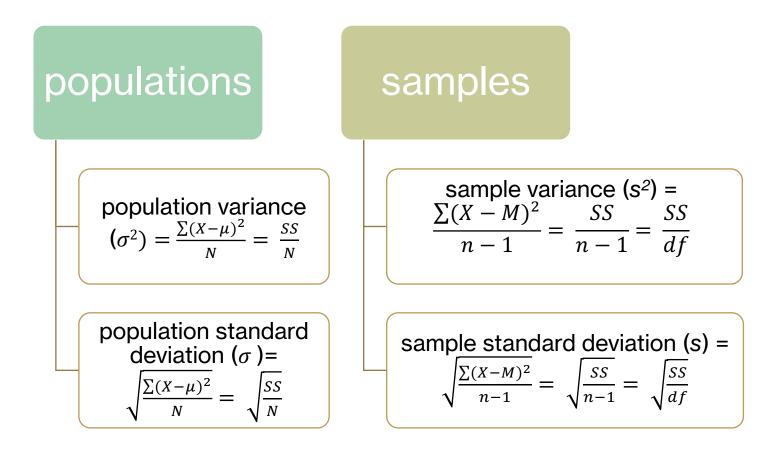
why (n-1)? degrees of freedom

- df = number of values that are *free to vary* in the calculation of a statistic
- for populations, we use the population mean (μ) to compute deviation scores (X μ)
- however, for samples, μ is unknown and we estimate it using our sample mean M
- computing M restricts the scores that went into the calculation
 - why? because changing even a single score would change M
 - if M is known, you only need to know n-1 scores to find the last score
 - only n-1 scores are free to vary once M is known

an example

- if the mean of quiz scores for 5 students is 9 points and four students' scores are 8, 10, 8, and 9, what is the score of the fifth student?

populations vs. samples

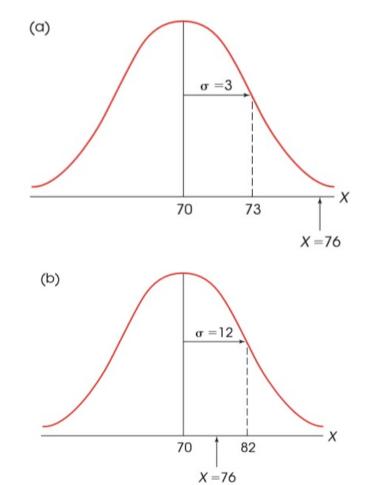


questions?

- explore the variability sheet

locating scores within distributions

- we have used means and standard deviations as ways to summarize distributions
- but, if you wanted to know how well you performed on a test, how would you apply this knowledge of the distribution to know how well you did?
- means and standard deviations together can be informative in describing a data point's relationship to the distribution

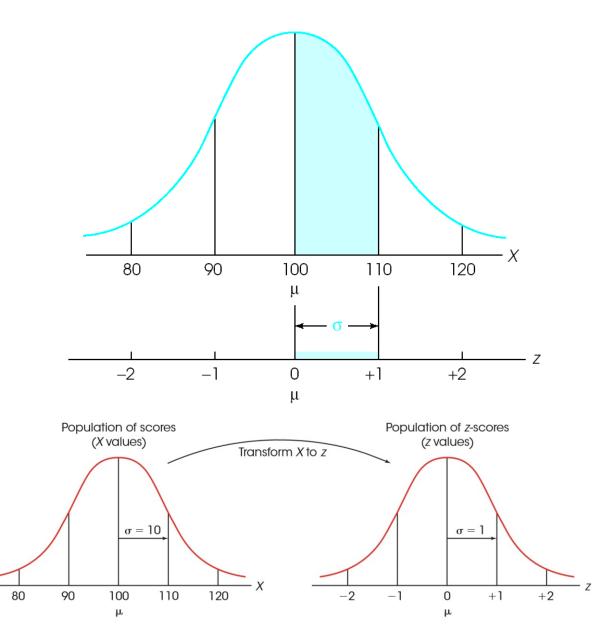


z-scores

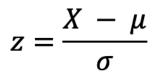
 z-scores are a way to understand how far away a score is from the mean, in standard deviation units

$$z = \frac{X - \mu}{\sigma}$$

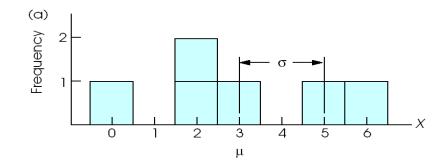
- calculate "distances" or deviation scores and divide by the standard deviation
- z-score is essentially a <u>ratio</u> that is asking: how extreme is my score relative to the average distance I can expect based on this distribution?
- any distribution can be transformed into a distribution of z-scores



calculating z-scores



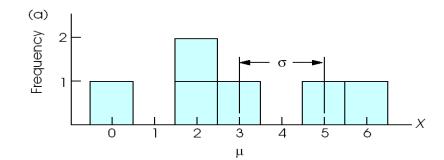
- six scores, calculate μ , σ , and z



calculating z-scores

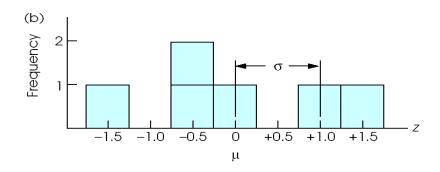
 $z = \frac{X - \mu}{\sigma}$

- six scores, calculate μ , σ , and z



Χ	mu	X-mu	squared_errors	MSE	RMSE	z
0	3	-3	9	4	2	-1.5
6		3	9			1.5
5		2	4			1
2		-1	1			-0.5
3		0	0			0
2		-1	1			-0.5

solution sheet



next time

- **before** class

- watch: Variability and z-scores
- prep: chapter 6 (specific sections see course website)
- *try*: problem set #2 (chapter 4 and 5 problems)
- during class
 - deep dive into the normal distribution