

DATA ANALYSIS

Week 4: Correlation + Regression

sheets/excel fails

FT Alphaville NBIM + Add to myFT
The Norwegian sovereign wealth fund's $\$ 92 \mathrm{mn}$ Excel error
\#VALUE!

Robin Wigglesworth FEBRUARY 92024
$\square 52$ 合

logistics: problem set \#2

- I also hate histograms in excel/sheets!!
- proportions range from 0 to 1 , percentages range from 1 to 100
- be careful about whether your analysis is on a sample or a population
- z-scores put a set of scores on a standard scale. changing the mean/sd will not change the z-score for the same set of data
- when only a few scores are presented/analyzed, their deviations may not sum to 0 !

logistics: midterm 1

Feb 23 rd 2024
(Friday)

today's agenda

correlation

regression

data $=$ model $\boldsymbol{+}$ error

- simple but extremely powerful idea
- the types of "models" we have considered so far have been very simple
- mean / median / mode
- simply describe the data or variable based on its own characteristics
- often, we are interested in the relationships between variables

modeling relationships

- we often want to determine the relationship between two or more variables
- the statistical approach typically then becomes:
- data (variable 1) = model (variables 2,3 , etc. $)+$ error
- research question: how well can a set of variables (IVs) explain the variation in a key variable (DV)?

example

- a dataset of heights and weights for American women aged 30-39
- research question(s):
- is there a relationship between height and weight?

Woman	height	weight
$\mathbf{1}$	58	115
$\mathbf{2}$	59	117
$\mathbf{3}$	60	120
$\mathbf{4}$	61	123
$\mathbf{5}$	62	126
$\mathbf{6}$	63	129
$\mathbf{7}$	64	132
$\mathbf{8}$	65	135
$\mathbf{9}$	66	139
$\mathbf{1 0}$	67	142
$\mathbf{1 1}$	68	146
$\mathbf{1 2}$	69	150
$\mathbf{1 3}$	70	154
$\mathbf{1 4}$	71	159
$\mathbf{1 5}$	72	164

- how well can height explain the variation in weight?
- what causes weights to vary?
- weight could vary independently of height
- weight could vary with height
- we could represent the problem graphically
- we could formulate a preliminary model
weight = b(height) + error

covariance

- weight and height are on very different scales
- how can we bring them to the same scale? z-scores!
- $\operatorname{mean}\left(z_{\text {height }}\right)=\operatorname{mean}\left(z_{\text {weight }}\right)=0$
- $\sigma\left(z_{\text {height }}\right)=\sigma\left(z_{\text {weight }}\right)=1$
- once we have them on the same scale (their variances are the same), we can look at how weight and height co-vary
- we multiply the z-scores together: $z_{x} z_{y}$
- average them together to get an "average" estimate of covariance: $\frac{\sum z_{x} z_{y}}{N}$

Woman	z_height	z_weight	z_h*z_w		r
1	-1.62037037	-1.451485967	2.351676046	0.9954947681	
2	-1.388888889	-1.317913639	1.830226406		
3	-1.157407407	-1.117555146	1.293318772		
4	-0.9259259259	-0.9171966539	0.8491590982		
5	-0.6944444444	-0.7168381616	0.497747384		
6	-0.462962963	-0.5164796692	0.2390836296		
7	-0.2314814815	-0.3161211768	0.07316783491		
8	0	-0.1157626845		0	
9	0.2314814815	0.151381972	0.03503811814		
10	0.462962963	0.3517404644	0.162824196		
11	0.6944444444	0.6188851209	0.4297322136		
12	0.9259259259	0.8860297774	0.8203041774		
13	1.157407407	1.153174434	1.334540088		
14	1.388888889	1.487105254	2.065187904		
15	1.62037037	1.821036075	2.950415653		

Pearson's r (correlation)

- measures the degree and direction of a linear relationship between two variables (X and Y)

$$
r=\frac{\text { degree to which two variables vary together (covary) }}{\text { degree to which two variables vary independently }}
$$

- degree
- higher values of r imply that a strong relationship between X and Y
- lower values of r imply that a weak relationship between X and Y
- direction
- positive (+): as X increases, Y also increases
- negative (-): as X increases, Y decreases

Pearson's r (correlation)

$$
r=\frac{\text { degree to which two variables vary together (covary) }}{\text { degree to which two variables vary independently }}
$$

but we calculated the relationship between height (X) and weight (Y) as follows:

$$
\begin{gathered}
r=\frac{\sum z_{x} z_{y}}{N} \\
r=\frac{\sum z_{x} z_{y}}{N}=\frac{1}{N} \sum\left(\frac{X-\mu_{x}}{\sigma_{x}}\right)\left(\frac{Y-\mu_{y}}{\sigma_{y}}\right)=\frac{\sum\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)}{N\left(\sigma_{x} \sigma_{y}\right)}=\frac{\sum\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right) / N}{\sigma_{x} \sigma_{y}}=\frac{\text { covariance }}{\text { independent variance }}
\end{gathered}
$$

Pearson's r (correlation)

- more generally, you don't need to standardize or z-score the two variables to find the correlation

$$
\rho(\text { population })=\frac{\sum\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)}{(N) \sigma_{x} \sigma_{y}}=\frac{\sum z_{x} z_{y}}{N} \text { OR } r(\text { sample })=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{(N-1) s_{x} s_{y}}=\frac{\sum z_{x} z_{y}}{N-1}
$$

- alternative formulas
- $S S=$ sum of squared errors
- SP = sum of product of deviation scores

$$
\begin{gathered}
S P=\sum X Y-\frac{\sum X \sum Y}{N} \\
r=\frac{S P_{x y}}{\sqrt{S S_{x} S S_{y}}}
\end{gathered}
$$

(15) ways to understand r

- https://www.stat.berkeley.edu/~rabbee/correlation.pdf
- stats exchange post

activity 1

- science and history scores
- calculate the Pearson correlation

activity 2

- try changing one of the history scores to an extreme value
- what happens to the correlation?

correlations and outliers

- outliers can have a dramatic effect on correlations
- always represent the problem graphically!

(b)

correlation \neq causation!

- for X to cause a change in Y :
- X and Y must covary
- X must precede Y
- there should be no competing explanation or third variable

Shoe size

$1 Q$

correlations and range restrictions

- correlations are greatly affected by the range of scores

Pearson's r and non-linearity

Anscombe's 4 Regression data sets

- Pearson's r measures the degree of linear relationship between two variables
- there can still be a consistent relationship, even if nonlinear but Pearson's r is not the appropriate model for these data
- more next time!

back to our example

- we found that the correlation was $r \approx 0.9954$ for z -scored height and weight
- reviewing our modeling framework:

Woman	z_height	Z_weight	z_h*z_w	r
1	-1.62037037	-1.451485967	2.351676046	0.9954947681
2	-1.388888889	-1.317913639	1.830226406	
3	-1.157407407	-1.117555146	1.293318772	
4	-0.9259259259	-0.9171966539	0.8491590982	
5	-0.6944444444	-0.7168381616	0.497747384	
6	-0.462962963	-0.5164796692	0.2390836296	
7	-0.2314814815	-0.3161211768	0.07316783491	
8	0	-0.1157626845	0	
9	0.2314814815	0.151381972	0.03503811814	
10	0.462962963	0.3517404644	0.162824196	
11	0.6944444444	0.6188851209	0.4297322136	
12	0.9259259259	0.8860297774	0.8203041774	
13	1.157407407	1.153174434	1.334540088	
14	1.388888889	1.487105254	2.065187904	
15	1.62037037	1.821036075	2.950415653	

- weight = b(height) + error
- weight $=0.9954$ (height) + error
- a 1-unit increase in standardized height leads to a 0.9954-unit increase in standardized weight
- turns out, this is very close to the equation of a straight line!
- $Y=b X+a+$ error
- Y? $X ? b ? a ?$

linear regression

- linear regression attempts to find the equation of a line that best fits the data, i.e., a line that could explain the variation in one variable using the other variable
- $\mathrm{Y}=\mathrm{bX}+\mathrm{a}+$ error
- b: slope of the line
- a: intercept
- extremely useful for prediction, i.e., given a score on X, we can predict a score on Y based on this line

activity: understanding lines

- $Y=b X+a+$ error
- only two points are needed to define a line
- the slope (b) is the "rise" (y) over the "run" (x) for a given pair of points
- the intercept (a) is where the line cuts off the Y axis (i.e., when $x=0$)
- example:
- points $=(0,2)$ and (4, 4)
- b (slope) $=\frac{\text { rise }}{\text { run }}=\frac{4-2}{4-0}=\frac{2}{4}=\frac{1}{2}$
- a (intercept) $=2$
- equation: $Y=\frac{1}{2} X+2$

linear regression: finding a and b

- when fitting a line to multiple points, finding the value of the slope (b) is not straightforward, because several lines could potentially fit the full dataset
- how do we find the one that best fits the data?
- we could plug in ALL possible values of b and a and compute the error?

$$
\text { error }=Y_{i}-\left(b X_{i}+a\right)
$$

- find the combination of b and a that minimizes
 this error

computing errors

computing errors

linear regression: finding a and b

- calculus provides a way to find the slope and intercept of the best-fitting line
- errors are first squared (to avoid canceling out!) and then summed, i.e., sum of squared errors (SS)
- $\operatorname{argmin}\left(\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}\right)$
- partial derivatives are taken with respect to a and b (to find the minima) to yield
- $a=M_{y}-b M_{x}$
$-b=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{\sum\left(X-M_{x}\right)^{2}}$

linear regression: finding a and b

- $a=M_{y}-b M_{x}$
- $b=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{\sum\left(X-M_{x}\right)^{2}}$
- rearranging the intercept equation:
- $M_{y}=a+b M_{x}$
- the line of best fit passes through means of X and Y

linear regression and correlation

- but we already found the correlation between weight and height, $r \approx 0.9954$
- how are b and r related?

$$
\begin{gathered}
r=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{(N-1) s_{x} s_{y}} \\
b=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{\sum\left(X-M_{x}\right)^{2}}=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{(N-1) s_{x}^{2}} \\
=\frac{r s_{x} s_{y}}{s_{x}^{2}}=r \frac{s_{y}}{s_{x}} \\
b=r \frac{s_{y}}{s_{x}}
\end{gathered}
$$

special cases

- no relationship between X and Y
- $r=0, b=0$
- $\mathrm{Y}=\mathrm{bX}+\mathrm{a}=\mathrm{a}=M_{y}-b M_{x}=M_{y}$
- $\mathrm{Y}=$ mean value of Y for all values of X
- what is b when X and Y are standardized?
- $b=r$ when $s_{x}=s_{y}=1$

next time

- before class
- work on: PS 3 (Chapter 15/16 problems)
- watch: Pearson correlation and Linear regression
- read: Chapter 15 (Section 15.5)
- during class
- more on correlation / regression!

