

DATA ANALYSIS

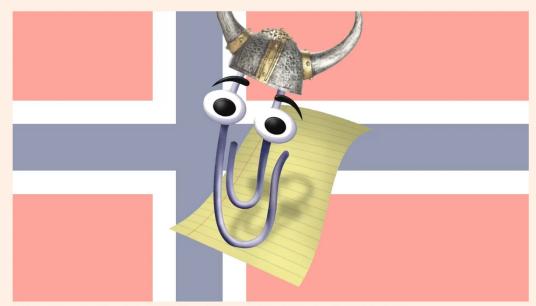
Week 4: Correlation + Regression

sheets/excel fails

FT Alphaville NBIM (+ Add to myFT)

The Norwegian sovereign wealth fund's \$92mn Excel error

#VALUE!



Hej! I åm Clippy, yøur øffice åssistant. Wøuld yøu leijke sømme hålp with that benchmårk kalculåtiøn?

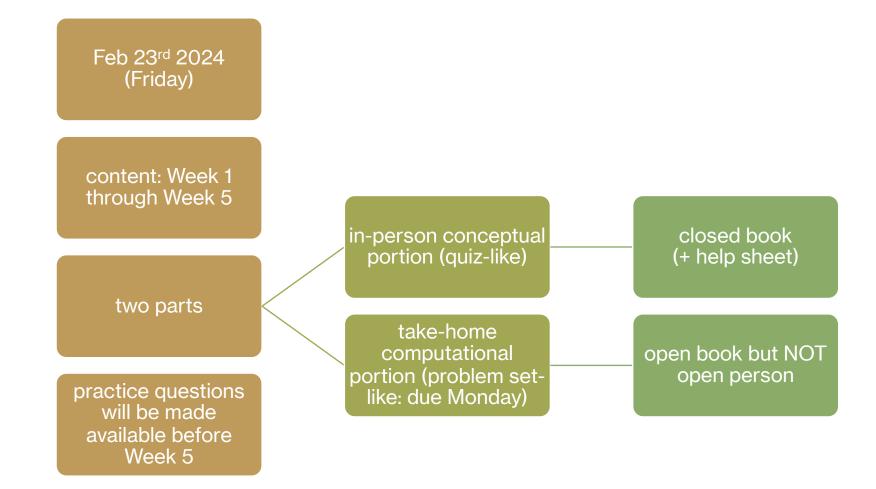
Robin Wigglesworth FEBRUARY 9 2024

🟳 52 🖶

logistics: problem set #2

- I also hate histograms in excel/sheets!!
- proportions range from 0 to 1, percentages range from 1 to 100
- be careful about whether your analysis is on a sample or a population
- z-scores put a set of scores on a standard scale. changing the mean/sd will not change the z-score for the same set of data
- when only a few scores are presented/analyzed, their deviations may not sum to O!

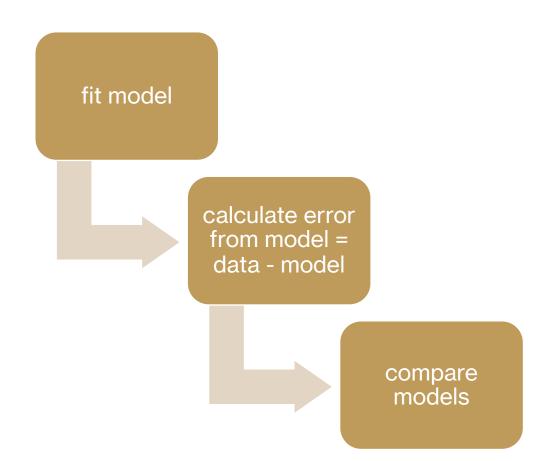
logistics: midterm 1



today's agenda

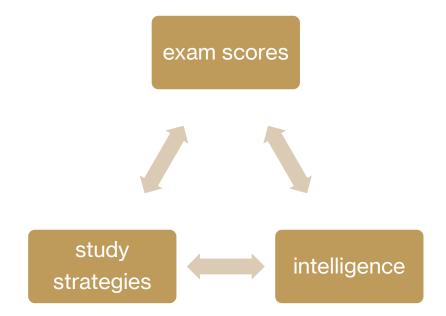
data = model + error

- simple but extremely powerful idea
- the types of "models" we have considered so far have been very simple
 - mean / median / mode
 - simply describe the data or variable based on its own characteristics
- often, we are interested in the relationships between variables



modeling relationships

- we often want to determine the relationship between two or more variables
- the statistical approach typically then becomes:
 - data (variable 1) = model (variables 2, 3, etc.) + error
- research question: how well can a set of variables (IVs) explain the variation in a key variable (DV)?

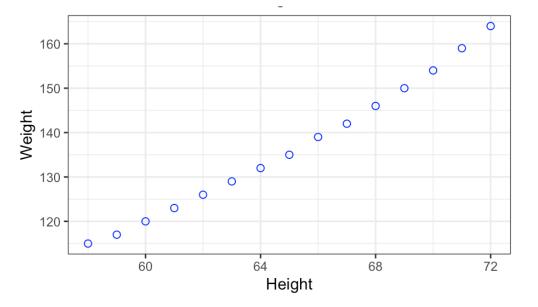


example

- a <u>dataset</u> of heights and weights for American women aged 30–39
- research question(s):
 - is there a relationship between height and weight?
 - how well can height explain the variation in weight?
- what causes weights to vary?
 - weight could vary independently of height
 - weight could vary with height
- we could represent the problem graphically
- we could formulate a preliminary model

weight = b(height) + error

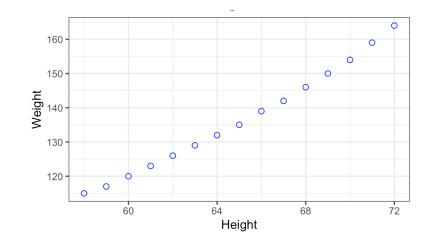
Woman	height		weight
	1	58	11:
	2	59	117
	3	60	120
	4	61	123
	5	62	120
	6	63	129
	7	64	132
	8	65	13
	9	66	139
1	0	67	142
1	1	68	140
1	2	69	150
1	3	70	154
1	4	71	159
1	5	72	164



covariance

- weight and height are on very different scales
- how can we bring them to the same scale? z-scores!
 - mean (z_{height}) = mean (z_{weight}) = 0
 - σ (z_{height}) = σ (z_{weight}) = 1
- once we have them on the same scale (their variances are the same), we can look at how weight and height *co-vary*
 - we multiply the z-scores together: $z_x z_y$
 - average them together to get an "average" estimate of

covariance: $\frac{\sum z_{x}z_{y}}{N}$



Woman	z_height	z_weight	z_h*z_w	r
1	-1.62037037	-1.451485967	2.351676046	0.9954947681
2	-1.388888889	-1.317913639	1.830226406	
3	-1.157407407	-1.117555146	1.293318772	
4	-0.9259259259	-0.9171966539	0.8491590982	
5	-0.694444444	-0.7168381616	0.497747384	
6	-0.462962963	-0.5164796692	0.2390836296	
7	-0.2314814815	-0.3161211768	0.07316783491	
8	0	-0.1157626845	0	
9	0.2314814815	0.151381972	0.03503811814	
10	0.462962963	0.3517404644	0.162824196	
11	0.694444444	0.6188851209	0.4297322136	
12	0.9259259259	0.8860297774	0.8203041774	
13	1.157407407	1.153174434	1.334540088	
14	1.388888889	1.487105254	2.065187904	
15	1.62037037	1.821036075	2.950415653	

Pearson's r (correlation)

measures the degree and direction of a linear relationship between two variables (X and Y) -

> degree to which two variables vary together (covary) degree to which two variables vary independently r = -

- degree
 - higher values of r imply that a strong relationship between X and Y
 - lower values of r imply that a weak relationship between X and Y
- direction -
 - positive (+): as X increases, Y also increases
 - negative (-): as X increases, Y decreases

Pearson's r (correlation)

 $r = \frac{degree \text{ to which two variables vary together (covary)}}{degree \text{ to which two variables vary independently}}$

but we calculated the relationship between height (X) and weight (Y) as follows:

$$r = \frac{\sum z_{\chi} z_{y}}{N}$$

$$r = \frac{\sum z_{x} z_{y}}{N} = \frac{1}{N} \sum \left(\frac{X - \mu_{x}}{\sigma_{x}} \right) \left(\frac{Y - \mu_{y}}{\sigma_{y}} \right) = \frac{\sum (X - \mu_{x})(Y - \mu_{y})}{N(\sigma_{x}\sigma_{y})} = \frac{\sum (X - \mu_{x})(Y - \mu_{y})}{\sigma_{x}\sigma_{y}} = \frac{covariance}{independent variance}$$

Pearson's r (correlation)

- more generally, you don't need to standardize or z-score the two variables to find the correlation

$$\rho(population) = \frac{\sum (X - \mu_X)(Y - \mu_y)}{(N)\sigma_X\sigma_y} = \frac{\sum z_X z_y}{N} \quad \text{OR } r(sample) = \frac{\sum (X - M_X)(Y - M_y)}{(N - 1)s_X s_y} = \frac{\sum z_X z_y}{N - 1}$$

- alternative formulas
 - SS = sum of squared errors
 - SP = sum of product of deviation scores

$$SP = \sum XY - \frac{\sum X \sum Y}{N}$$

$$r = \frac{SP_{xy}}{\sqrt{SS_xSS_y}}$$

(15) ways to understand r

- https://www.stat.berkeley.edu/~rabbee/correlation.pdf

- stats exchange post

activity 1

- science and history scores

- calculate the Pearson correlation

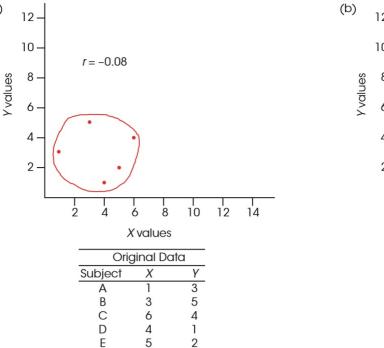
activity 2

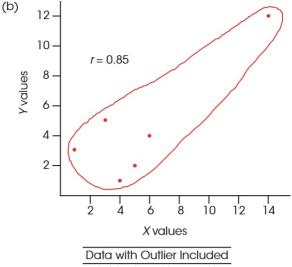
- try changing one of the history scores to an extreme value
- what happens to the correlation?

correlations and outliers

(a)

- outliers can have a dramatic effect on correlations
- always represent the problem graphically!

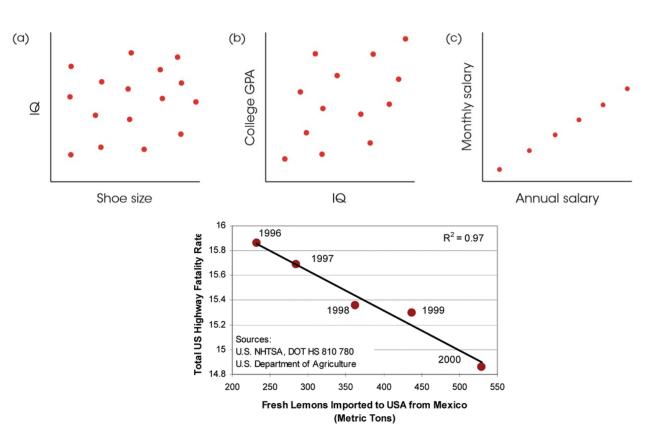




<u> </u>					
Data with Outlier Included					
Subject	X	Y			
A	1	3			
В	3	5			
С	6	4			
D	4	1			
E	5	2			
F	14	12			

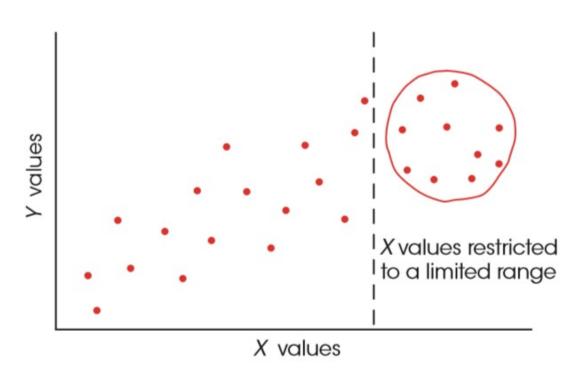
correlation \neq **causation**!

- for X to cause a change in Y:
 - X and Y must covary
 - X must precede Y
 - there should be no competing explanation or third variable



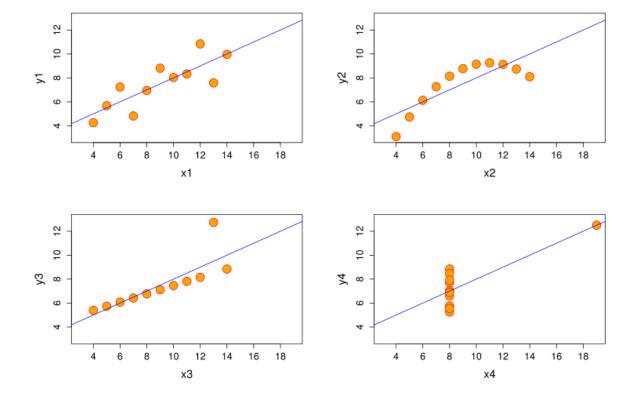
correlations and range restrictions

 correlations are greatly affected by the range of scores



Pearson's r and non-linearity

- Pearson's r measures the degree of *linear* relationship between two variables
- there can still be a consistent relationship, even if nonlinear but Pearson's *r* is not the appropriate model for these data
- more next time!

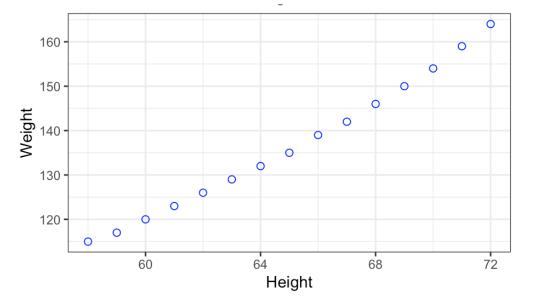


Anscombe's 4 Regression data sets

back to our example

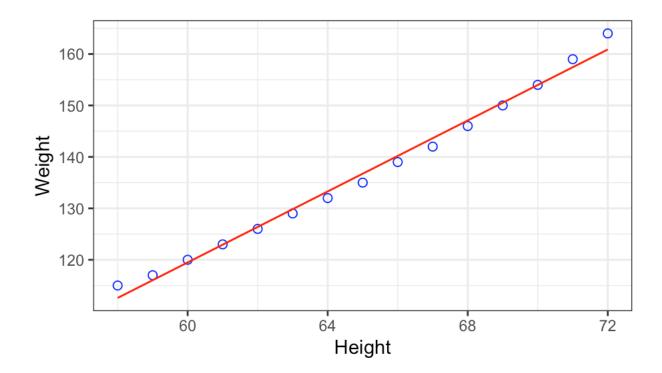
- we found that the *correlation* was $r \approx 0.9954$ for z-scored height and weight
- reviewing our modeling framework:
 - weight = b(height) + error
 - weight = 0.9954 (height) + error
 - a 1-unit increase in standardized height leads to a 0.9954-unit increase in standardized weight
- turns out, this is very close to the equation of a straight line!
 - Y = bX + a + error
 - Y? X? b? a?

Woman	z_height	z_weight	z_h*z_w	r
1	-1.62037037	-1.451485967	2.351676046	0.9954947681
2	-1.388888889	-1.317913639	1.830226406	
3	-1.157407407	-1.117555146	1.293318772	
4	-0.9259259259	-0.9171966539	0.8491590982	
5	-0.694444444	-0.7168381616	0.497747384	
6	-0.462962963	-0.5164796692	0.2390836296	
7	-0.2314814815	-0.3161211768	0.07316783491	
8	0	-0.1157626845	0	
9	0.2314814815	0.151381972	0.03503811814	
10	0.462962963	0.3517404644	0.162824196	
11	0.694444444	0.6188851209	0.4297322136	
12	0.9259259259	0.8860297774	0.8203041774	
13	1.157407407	1.153174434	1.334540088	
14	1.388888889	1.487105254	2.065187904	
15	1.62037037	1.821036075	2.950415653	



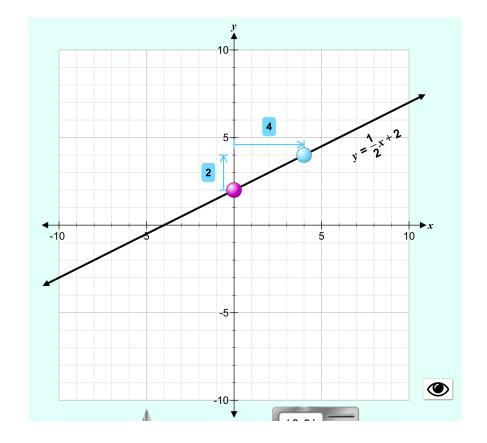
linear regression

- linear regression attempts to find the equation of a line that best fits the data,
 i.e., a line that could explain the variation in one variable using the other variable
- Y = bX + a + error
 - b: slope of the line
 - a: intercept
- extremely useful for prediction, i.e., given a score on X, we can predict a score on Y based on this line



activity: understanding lines

- Y = bX + a + error
- only two points are needed to define a line
- the slope (b) is the "rise" (y) over the "run" (x) for a given pair of points
- the intercept (a) is where the line cuts off the Y axis (i.e., when x = 0)
- example:
 - points = (0,2) and (4, 4)
 - b (slope) = $\frac{rise}{run} = \frac{4-2}{4-0} = \frac{2}{4} = \frac{1}{2}$
 - a (intercept) = 2
 - equation: $Y = \frac{1}{2}X + 2$

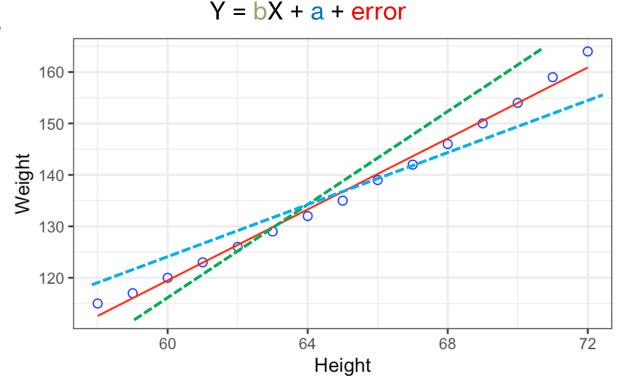


linear regression: finding a and b

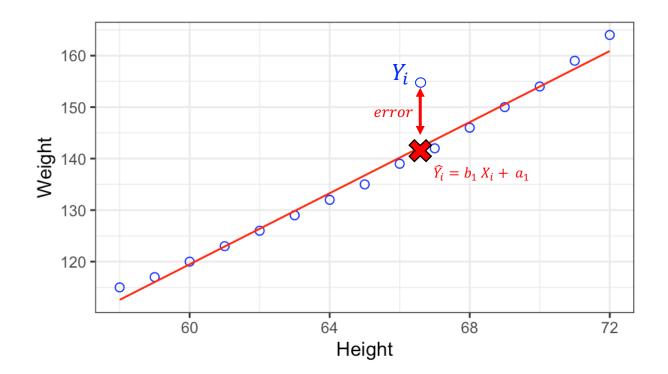
- when fitting a line to multiple points, finding the value of the slope (b) is not straightforward, because several lines could potentially fit the full dataset
- how do we find the one that best fits the data?
- we could plug in ALL possible values of
 b and a and compute the error?

 $error = Y_i - (bX_i + a)$

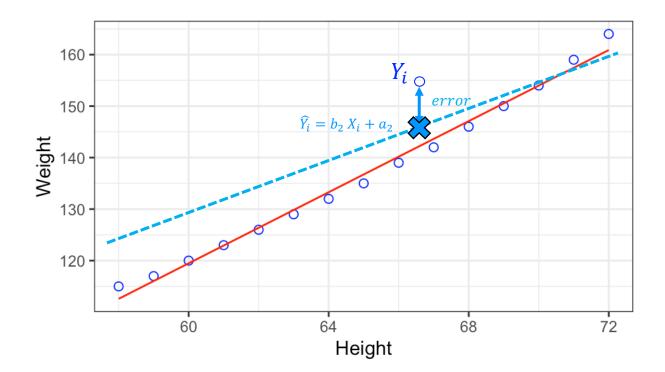
- find the combination of *b* and *a* that minimizes this error



computing errors



computing errors



linear regression: finding a and b

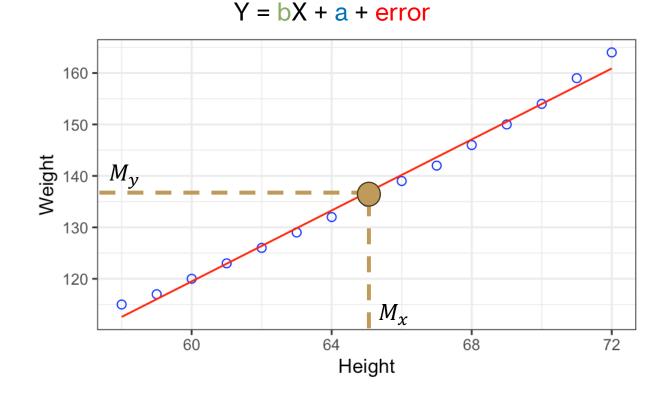
- calculus provides a way to find the slope and intercept of the best-fitting line
- errors are first squared (to avoid canceling out!) and then summed, i.e., sum of squared errors (SS)
- $\operatorname{argmin}(\sum_{i=1}^{n}(y_i a bx_i)^2)$
- partial derivatives are taken with respect to a and b (to find the minima) to yield
 - $a = M_y bM_x$

$$- b = \frac{\sum (X - M_x)(Y - M_y)}{\sum (X - M_x)^2}$$

160 160 150 140 130 120 60 60 64 Height

linear regression: finding a and b

- $a = M_y bM_x$
- $b = \frac{\sum (X M_x)(Y M_y)}{\sum (X M_x)^2}$
- rearranging the intercept equation:
 - $M_y = a + bM_x$
- the line of best fit passes through means of X and Y



linear regression and correlation

- but we already found the correlation
 between weight and height, *r* ≈ 0.9954
- how are b and r related?

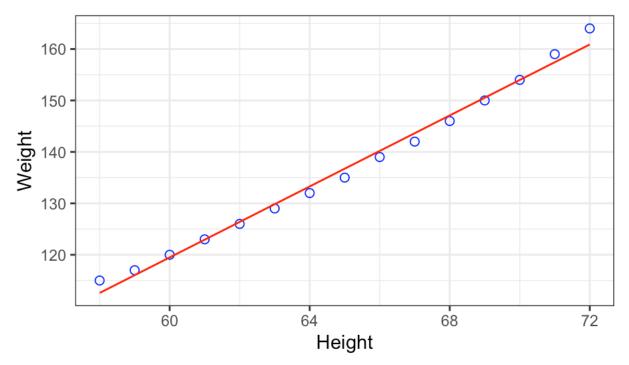
$$r = \frac{\sum (X - M_x)(Y - M_y)}{(N - 1)s_x s_y}$$

$$b = \frac{\sum (X - M_x)(Y - M_y)}{\sum (X - M_x)^2} = \frac{\sum (X - M_x)(Y - M_y)}{(N - 1)s_x^2}$$

$$= \frac{r s_x s_y}{s_x^2} = r \frac{s_y}{s_x}$$

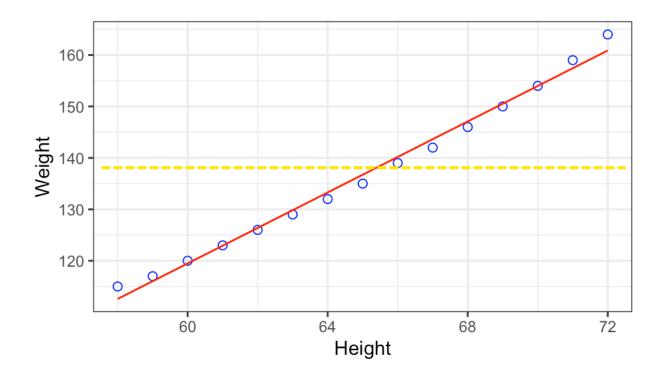
$$b = r \frac{s_y}{s_x}$$

Y = bX + a + error



special cases

- no relationship between X and Y
 - -r = 0, b = 0
 - Y = bX + a = a = $M_y bM_x = M_y$
 - Y = mean value of Y for all values of X
- what is **b** when X and Y are standardized?
 - b = r when $s_x = s_y = 1$



next time

- **before** class

- work on: PS 3 (Chapter 15/16 problems)
- watch: Pearson correlation and Linear regression
- read: Chapter 15 (Section 15.5)
- during class
 - more on correlation / regression!