

DATA ANALYSIS

Week 4: Correlations and regression

lunch with Psychology faculty!

Lunch with Psychology Faculty
The Psychology Department is hosting lunches with faculty and students this semester.

All lunches will be in Thorne Dining! Please meet us at the check-in station at the times mentioned for the specific dates.

The lunches are on the following dates/times:

- Wednesday, February 212024 (12 pm): Prof. Erika Nyhus and Prof. Hannah Reese
- Tuesday, March 52024 ($\mathbf{1 2} \mathbf{~ p m}$): Prof. Kacie Armstrong, Prof. Suzanne Lovett, and Prof. Thomas Small
- Friday, April 122024 ($\mathbf{1 . 1 0}$ pm): Prof. Abhilasha Kumar and Prof. Samuel Putnam

We look forward to seeing you!

logistics: class survey (February)

- https://forms.gle/hw6kQzznP73Rrifh6
- link also on Canvas (under class surveys)
- due Feb 21 (Wed morning, so we can talk about it in class on Wed)
- 1 extra credit point that counts towards your final points/grade
- submit on Canvas (it's an "assignment" on Canvas)
- I value your feedback
- anonymous survey! please be honest and reflective
- you will get a code at the end of the survey (on the thank you screen)
- copy-paste this code on Canvas to get credit

what's coming up

4	F: February 16, 2024	W4 continued...
5	M: February 19, 2024	Problem Set 3 due
5	W: February 21, 2024	W5: Loose Ends/Exam 1 review
5	F: February 23, 2024	Exam (Midterm) 1
6	W: February 28, 2024	W6: Probability \& Sampling
6	F: March 1, 2024	sampling
7	M: March 4, 2024	Problem Set Opt-out Deadline 2
7	W: March 6, 2024	W7: Hypothesis Testing
7	F: March 8, 2024	W7 continued...
8	M: March 11, 2024	Problem Set 4 due
8	W: March 13, 2024	Spring Break!
8	F: March 15, 2024	Spring Break!
9	W: March 20, 2024	Spring Break!
9	F: March 22, 2024	Spring Break!

logistics: midterm 1

Feb 23 rd 2024
(Friday)

logistics: review for midterm 1

- practice midterm is available on Canvas (Modules > Midterm 1)
- conceptual portion (40\% of total midterm)
- 40 multiple-choice/true-false questions
- try to practice in a timed/closed-book manner
- computational portion (60\% of total midterm)
- short answer questions
- sheets-based questions
- answers will be posted on Tuesday
- actual exam: you will submit a downloaded PDF + downloaded Sheets file on Canvas

some bonus content

- guesssing correlations and tracking your performance!
- why is a correlation restricted to -1 and 1?

today's agenda

more on correlations
assessing model fit

recap: correlation and regression

- Pearson's correlation (r) measures the linear relationship between two variables

$$
\rho(\text { population })=\frac{\sum\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)}{(N) \sigma_{x} \sigma_{y}}=\frac{\sum z_{x} z_{y}}{N} \text { OR } r(\text { sample })=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{(N-1) s_{x} s_{y}}=\frac{\sum z_{x} z_{y}}{N-1}
$$

- linear regression uses r to fit a straight line to the data

$$
\begin{gathered}
b=\frac{\sum\left(X-M_{x}\right)\left(Y-M_{y}\right)}{\sum\left(X-M_{x}\right)^{2}}=r \frac{s_{y}}{s_{x}} \\
a=M_{y}-b M_{x}
\end{gathered}
$$

regression toward the mean

- if two variables are imperfectly correlated, extreme scores on one variable are associated with less extreme scores on the other variable, on average
- consider two measurements of intelligence, one before and one after a treatment
- data = model + error
- the first measurement likely has some error with respect to the true value, due to several factors
- the second measurement will try to again estimate the true value
- since values closer to the mean are more likely, the second measurement is likely to be closer to the mean than the first extreme value

regression toward the mean

$$
\begin{gathered}
\hat{Y}=a+b X=\text { predictions } \\
b=r \frac{s_{y}}{s_{x}} \\
a=M_{y}-b M_{x} \\
\hat{Y}=M_{y}-b M_{x}+b X=M_{y}+b\left(X-M_{x}\right) \\
\hat{Y}-M_{y}=b\left(X-M_{x}\right) \\
\hat{Y}-M_{y}=r \frac{s_{y}}{s_{x}}\left(X-M_{x}\right) \\
\frac{\hat{Y}-M_{y}}{s_{y}}=r \frac{\left(X-M_{x}\right)}{s_{x}} \\
\widehat{Z_{y}}=r Z_{x}
\end{gathered}
$$

If $\mathrm{r} \neq \mp 1, \widehat{z_{y}}$ (predicted value of Y) is less [extreme] than the value of $\mathrm{X}\left(z_{x}\right)$
Bonus: If you know the z-score of X and the correlation, you can find the predicted z -score for Y !

how good is the line of best fit?

- even the line of "best" fit may ultimately not fit the data very well due to the inherent variability in the data
- how we assess model fit?
- data $=$ model + error
- data $=a+b X+$ error
- our favorite friend: sum of squared errors (SS)!

$$
\begin{gathered}
\hat{Y}=a+b X=\text { predictions } \\
S S_{\text {error }}=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}=\sum(Y-\hat{Y})^{2}
\end{gathered}
$$

understanding goodness/errors

$$
\begin{gathered}
S S_{\text {total }}=S S_{\text {model }}+S S_{\text {error }} \\
S S_{\text {total }}=\sum\left(Y-M_{y}\right)^{2} \\
S S_{\text {error }}=\sum(Y-\hat{Y})^{2} \\
S S_{\text {model }}=\sum\left(\hat{Y}-M_{y}\right)^{2}
\end{gathered}
$$

coefficient of determination ($\mathbf{R}^{\mathbf{2}}$)

- what proportion of the total error variance is explained by my model?
- $R^{2}=\frac{S S_{\text {model }}}{S S_{\text {total }}}=r^{2}$ in the case of simple linear regression (i.e., $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$) (proof)
- R^{2} denotes the percentage of variance explained in Y due to X
- when multiple variables are involved, R^{2} reflects the variance explained by the full model

other variables in the mix

- sometimes, more than one variable (X and Z) may impact the key variable of interest (Y)
- in such cases, it is difficult to isolate the impact of one variable (X) on another (Y), without taking into account the variance shared by the variables (X and Z)
- three relationships $r_{x y}, r_{x z}, r_{y z}$
- partial correlation of X and Y

$$
r_{X Y . Z}=\frac{r_{X Y}-\left(r_{X Z} r_{Y Z}\right)}{\sqrt{\left(1-r_{X Z}^{2}\right)\left(1-r_{Y Z}^{2}\right)}}
$$

multiple regression

- multiple linear regression refers to finding a model that best predicts a variable of interest (Y) using more than one variable ($\mathrm{X}_{1}, \mathrm{X}_{2}$, etc.)
- data = model + error
- linear: $\mathrm{Y}=\mathrm{bX}+\mathrm{a}+$ error
- multiple: $\mathrm{Y}=\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{a}+$ error
- for two variables, we are fitting a plane to the data instead of a line
- more to come! we will discuss a family of models within the framework of "general linear models"

standard error of estimate / r

- how far away is an average data point from the line of best fit?
- similar concept to standard deviation, $\mathrm{s}=\sqrt{\frac{s s}{d f}}$
- standard error of estimate (regression model) = "average" $S S_{\text {error }}$

$$
S E_{\text {model }}=\sqrt{\frac{S S_{\text {error }}}{d f}}=\sqrt{\frac{S S_{\text {error }}}{n-2}}
$$

- standard error for correlation

$$
r^{2}=\text { explained variance }
$$

unexplained variance $=1-$ explained variance $=1-r^{2}$

$$
S E_{r}=s_{r}=\sqrt{\frac{1-r^{2}}{n-2}}
$$

conceptual differences

- technically, regression involves predicting a random variable (Y) using a fixed variable (X). In this situation, no sampling error is involved in X, and repeated replications will involve the same values for X (this allows for prediction)
- example: X is an experimental manipulation
- correlation describes the situation in which both X and Y are random variables. In this case, the values for X and Y vary from one replication to another and thus sampling error is involved in both variables
- example: X and Y both naturally vary

can we trust our models?

- our goal is to find the best model for our data and generalize to the population
- but how do we know that our sample is representative of the population? how do we know our models are good enough?
- after midterm 1 !
population
- all individuals of interest

sample

- the small subset of individuals who were studied

Pearson's r assumptions

- interval/ratio scale: variables should be on interval / ratio scale: if the distance between the values is not equal, estimates of variability are difficult
- homoskedasticity: dispersion of Y remains relatively similar across the range of X
- no significant outliers

- variables should be approximately normally distributed

alternatives to Pearson's r

- when data are not interval/ratio, Pearson's r is not appropriate
- other alternatives exist
- both variables ordinal: spearman's rho
- one variable dichotomous (binomial): point biserial
- both variables dichotomous: phi
- all alternatives are simply variations/extensions of Pearson's r
- remember, data $=$ model + error
- when the data changes, the model also changes

spearman's rho

- typically used for ordinal scales, non-linear relationships, or when outliers may need to be included
- uses ranks / ordering of scores instead of the raw scores themselves

Amount of practice (X)

- a set of scores
- we first calculate Pearson's r
$=C O R R E L(X, Y)$
- then we compute ranks
- lowest numbers get lower ranks
- compute the pearson's r for ranks!
=CORREL(rank_x, rank_y)

Person	\mathbf{X}	\mathbf{Y}	rank_x	rank_y	
A	3	12		1	5
B	4	10		2	3
C	10	11		3	4
D	11	9		4	4
E	12	2		5	2

pearson
spearman

activity: calculate spearman's rho

- calculate the correlation between two items from the statistics
survey from class
- sheet (fake data)

Student	I will like statistics	I will have no idea of what's going on in this statistics course.		
1	6	2		
2	5	1		
3	3	4		
4	7	7		
5	4	3		

activity: calculate spearman's rho

Student	I will like statistics	I will have no idea of what's going on in this statistics course.	rank_like	rank_idea	rho	r
1	6	2	4	2	0.1	0.3434014099
2	5	1	3	1		
3	3	4	1	4		
4	7	7	5	5		
5	4	3	2	3		

spearman's rho: handling ties

- when two or more scores are the same, their ranks are the average of the ranks they would have gotten if the scores were different

$\left.$| score |
| :--- | $\mathbf{7} \right\rvert\,$| 8 |
| :--- |

spearman's rho: handling ties

- when two or more scores are the same, their ranks are the average of the ranks they would have gotten if the scores were different

score	initial_ranks
7	6
8	7
2	2
7	5
4	4
2	1
4	3

spearman's rho: handling ties

- when two or more scores are the same, their ranks are the average of the ranks they would have gotten if the scores were different

score	initial_ranks	final_ranks	
$\mathbf{7}$	6	5.5	
8	7	7	
2	2	1.5	
7	5	5.5	
4	4	3.5	
2	1	1.5	
4	3	3.5	

spearman's rho: other formula

$$
r=\frac{\sum\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)}{(N) \sigma_{x} \sigma_{y}}
$$

- given that ranks do away with the original scores, this formula can be simplified when there are no ties

$$
r_{s}=1-\frac{6 \sum D^{2}}{n\left(n^{2}-1\right)}
$$

where D is difference between X and Y ranks for each data point

- proof

spearman's rho: other formula

- what is D if the ranks of X and Y are in the same order?
- what is r ?

$$
r_{s}=1-\frac{6 \sum D^{2}}{n\left(n^{2}-1\right)}
$$

X	Y	rank_x	rank_y	D	D^{2}
3	12	1	5	-4	16
4	10	2	3	-1	1
10	11	3	4	-1	1
11	9	4	2	2	4
12	2	5	1	4	16

point biserial and phi

- similar idea as Pearson's r but now our variables are not interval/ratio
- just converting the dichotomous variable to 0/1 numeric representations
- point biserial : one variable dichotomous
- phi : both variables dichotomous
- convert to numeric representations
- proceed as before

puzzle score	group
11	
9	0
4	0
5	0
6	0
7	0
12	0
10	0
7	0
13	1
14	1
16	1
9	1
11	1
15	1
11	1
	meanY
10	1
	0.5

point biserial and phi

- similar idea as Pearson's r but now our variables are not interval/ratio
- just converting the dichotomous variable to 0/1 numeric representations
- point biserial : one variable dichotomous
- phi : both variables dichotomous
- convert to numeric representations
- proceed as before

puzzle score	group	sqx	sqy	z_x	z_y	z_x ${ }^{\text {* }}$ _ ${ }^{\text {y }}$
11	0	1	0.25	0.2901905	-1	-0.2901905
9	0	1	0.25	-0.2901905	-1	0.2901905
4	0	36	0.25	-1.741143	-1	1.741143
5	0	25	0.25	-1.4509525	-1	1.4509525
6	0	16	0.25	-1.160762	-1	1.160762
7	0	9	0.25	-0.8705715001	-1	0.8705715001
12	0	4	0.25	0.5803810001	-1	-0.5803810001
10	0	0	0.25	0	-1	0
7	1	9	0.25	-0.8705715001	1	-0.8705715001
13	1	9	0.25	0.8705715001	1	0.8705715001
14	1	16	0.25	1.160762	1	1.160762
16	1	36	0.25	1.741143	1	1.741143
9	1	1	0.25	-0.2901905	1	-0.2901905
11	1	1	0.25	0.2901905	1	0.2901905
15	1	25	0.25	1.4509525	1	1.4509525
11	1	1	0.25	0.2901905	1	0.2901905
mean X	meanY	SSx	SSy			r
10	0.5	190	4			0.5803810001
		sd_x	sd_y			
		3.446012188	0.5			

next time

- before class
- complete: Week 4 quiz
- submit:PS3
- fill out: class survey (February)
- practice: midterm 1 review questions
- during class
- reviewing concepts + preparing for midterm 1!

