

DATA ANALYSIS

Week 4: Sampling

logistics: midterm 1

- computational grades will be made available latest by tomorrow
- review my comments in rubric
- no points were taken off for some consistent errors but I have left comments for these
- Part 1, Q3d (ii)
- Part 3, Q7
- you will also see a FINAL midterm grade (out of 15; conceptual + computational)
- please come see me if you have questions!
- Monday: available from 1-3 pm (Kanbar 217)

probability and inference

today's agenda

class survey

recap: binomial distribution

- data can only take two possible values (bi=two, nomial = names)
- a sequence of "bernoulli trials" (with only 2 possible outcomes)
- question of interest: how often does an outcome (A or B) occur in a sample of observations?

$$
p=p(A) \text { and } q=p(B)
$$

$$
p+q=1 \text { i.e., } q=1-p(A) \text { and } p=1-p(B)
$$

- n : number of observations/individuals in the sample
- X : number of times that A occurs in the sample
- X ranges between 0 and n
- the binomial distribution shows the probability associated with each X
 value from $X=0$ to $X=n$

increasing n...

- play with the coin toss simulator
- increase number of coin tosses (n)
- simulate flips!
- as the number of coin tosses (n) increases, the distribution starts to resemble a normal distribution!

- rule of thumb: when $p n$ and $q n \geq 10$, the binomial distribution approximates the normal distribution
- mean: $\mu=p n$
- standard deviation: $\sigma=\sqrt{n p q}$
- z-score: $\mathrm{z}=\frac{X-\mu}{\sigma}=\frac{X-p n}{\sqrt{n p q}}$

example 1

- using a balanced coin, what is the probability of obtaining more than 30 heads in 50 tosses?
- balanced coin, i.e., $p=p($ head $)=0.5, q=p$ (tail) $=0.5$
- $n=50, X=30$
- $\mu=p n=0.5(50)=25, q n=0.5(50)=25$
- $\quad p n$ and $q n \geq 10$ so we can proceed with normal approximation
- $\sigma=\sqrt{n p q}=\sqrt{50(0.5)(0.5)}=3.54$
- $\mathrm{z}=\frac{X-\mu}{\sigma}=\frac{30-25}{3.54}=1.18$
- look up probability in visual calculator
- $p(X>30)=$ less than .119
- note: textbook uses real limits (i.e., 30.5 here, but for simplicity stick to actual number and reframe your answer to more/less than probability obtained)

example 2

- a friend bets you that he can draw a king more than 8 times in 20 draws (with replacement) of a fair deck of cards, and he does it. Is this a likely outcome, or should you conclude that the deck is not "fair"?

example 2

- $p($ king $)=\frac{4}{52}=.077, q=1-p=.923$
- $n=20$ (draws), $X=8$ (kings)
- $\mu=p n=0.077(20)=1.54$
- $q n=0.923(20)=18.46$
- $\sigma=\sqrt{n p q}=\sqrt{20(0.077)(0.923)}=1.19$
- $\mathrm{z}=\frac{x-\mu}{\sigma}=\frac{8-1.54}{1.19}=5.42$

- look up probability in visual calculator
- $p(X>8) \approx 0!!$

three outstanding questions

- question 1: how do I calculate probabilities if I don't have access to ALL the scores?
- question 2: how do we know what the distribution of the null hypothesis looks like? If we don't know the form of the distribution, we cannot calculate probabilities
- question 3: how do we know whether the probability we obtained, i.e., P(data | null hypothesis) is small enough?

ALL sample correlations with sample size n when
there is no meaningful relationship between height and weight in the population

sampling from a population

- sampling error: the discrepancy between the sample statistic and the true population parameter it is estimating
- each time we sample, we compute some type of statistic (e.g., mean, correlation, etc.)
- sampling distribution: distribution of all possible values of the statistic obtained from multiple samples of a given size
- distribution of sample means contains all
 sample means of a size \boldsymbol{n} that can be obtained from a population

sampling from a population

- sampling error: the discrepancy between the sample statistic and the true population parameter it is estimating
- each time we sample, we compute some type of statistic (e.g., mean, correlation, etc.)
- sampling distribution: distribution of all possible values of the statistic obtained from multiple samples of a given size
- distribution of sample means contains all sample means of a size \boldsymbol{n} that can be obtained from a population
what does the sampling distribution of means look like??

sampling distribution

- simulator
- change the distribution to bell-shaped and make sure the first statistic is the "mean" and the second statistic is "none"
- start with a single sample of size 5 and play it 1 time vs. 5 times vs. 1000 times
- explore what the three graphs are showing

sampling distribution

- three distributions
- the population distribution
- the sample distribution
- the sampling distribution (of all means)
- mean of sample means = population mean (unbiased estimator!)
- the sampling distribution of means approximates the normal distribution as n (sample size) increases

Population $\boldsymbol{+}$	
Mean	25
Median	25
Std.dev.	5

Samples +	
Sample size	15
Mean	23.68
Median	24.1384
Std. dev.	4.8149

from all samples to few samples

- in practice, we cannot compute all possible samples of size n
- the central limit theorem states that for any population with mean μ and standard deviation σ, the distribution of sample means for sample size n will have:
- a mean of $\mu_{M}=\mu=$ expected value of M
- a standard deviation of $\sigma_{M}=\frac{\sigma}{\sqrt{n}}=$ standard error of the mean or M
- will approach a normal distribution as n approaches infinity
- distribution of sample means will be normally distributed even if the population was not normally distributed (if \mathbf{n} is large enough!)
- typically n (number of scores in a sample) around 30 yields a reasonably normal distribution

any distribution?

Distribution
Right skewed

First statistic
Mean

Second statistic
None

- simulator
- change the population distribution to any non-normal distribution
- make sure the first statistic is the "mean" and the second statistic is "none"
- explore what the sampling distribution looks like for small and large samples

distribution of sample means

for a large n , distribution of sample means will be normally distributed even if the population was not normally distributed!

standard error of the mean

- standard error of the mean: $\sigma_{M}=\sqrt{\frac{\sigma^{2}}{n}}=\frac{\sigma}{\sqrt{n}}$
- how different a mean from one sample could be from another on "average"
- also measures reliability: how well an individual sample's mean represents the entire distribution of sample means

- law of large numbers: the larger the sample size (n), the more likely that the sample mean is closer to the population mean, and smaller the σ_{M}
- insight: we cannot control the population standard deviation but we can control the sample size!
- if we want our standard error of the mean to be low, we can use larger samples

example

- SAT-scores population ($\mu=500, \sigma=100$). If you take a random sample of $n=16$ students, what is the probability that the sample mean will be greater than $\boldsymbol{M}=\mathbf{5 4 0}$?
- we are talking about the sample mean, not an individual score anymore! i.e., we use the distribution of sample means (i.e., the sampling distribution) which approaches the normal distribution for large n
- represent the problem graphically
- calculate σ_{M} and z

$$
\begin{gathered}
\sigma_{M}=\frac{\sigma}{\sqrt{n}}=\frac{100}{\sqrt{16}}=\frac{100}{4}=25 \\
z=\frac{M-\mu}{\sigma_{M}}=\frac{540-500}{25}=1.6
\end{gathered}
$$

- visual calculator
- $p(M>540)=$ less than .0548
distribution of sample means

activity

- Jumbo shrimp are those that require 10-15 shrimp to make a pound. Suppose that the number of jumbo shrimp in a 1-pound bag averages $\mu=12.5$ with a standard deviation of $\sigma=1$, and forms a normal distribution. What is the probability of randomly picking a sample of $n=251$-pound bags that average more than $\mathrm{M}=13$ shrimp per bag?

activity

- $\mathrm{n}=25, \mu=12.5, \sigma=1$
- represent the problem graphically
- calculate σ_{M} and z

$$
\begin{aligned}
\sigma_{M} & =\frac{\sigma}{\sqrt{n}}=\frac{1}{\sqrt{25}}=\frac{1}{5}=0.20 \\
z & =\frac{M-\mu}{\sigma_{M}}=\frac{13-12.5}{0.20}=\frac{0.5}{0.20}=2.5
\end{aligned}
$$

- look up probability in visual calculator
- $p(M>13)=$ less than .0062

three outstanding questions

- question 1: how do I calculate probabilities if I don't have access to ALL the scores?
- question 2: how do we know what the distribution of the null hypothesis looks like? If we don't know the form of the distribution, we cannot calculate probabilities
- question 3: how do we know whether the probability we obtained, i.e., P(data | null hypothesis) is small enough?

ALL sample correlations with sample size n when
there is no meaningful relationship between height and weight in the population

outstanding question \#1

- question 1: how do I calculate probabilities if I don't have access to ALL the scores?
- if I know that the distribution of the sample statistic is normal, or approaches normal, then I can calculate probabilities!

ALL sample correlations with sample size n when there is no meaningful relationship between height and weight in the population

outstanding question \#2

- question 2: how do we know what the distribution of the null hypothesis looks like? If we don't know the form of the distribution, we cannot calculate probabilities
- the central limit theorem states that for any population, the distribution of sample means will be normal for large sample ($\mathrm{n}>30$)
- caveat: CLT only applies to sample means, NOT other sample statistics!

ALL sample correlations with sample size n when there is no meaningful relationship between height and weight in the population

outstanding question \#2

- simulator
- change the distribution to bell-shaped and make sure the first statistic is the "variance" and the second statistic is "none"
- start with a single sample of size 5 and play it 1 time vs. 5 times vs. 1000 times
- explore what the three graphs are showing
- the sampling distribution of variances is NOT normally distributed
- sampling distribution of several other statistics (e.g., correlation) may also NOT be normally distributed!

outstanding question \#2

- question 2: how do we know what the distribution of the null hypothesis looks like? If we don't know the form of the distribution, we cannot calculate probabilities
- if we can figure out the sampling distribution of the sample statistic (e.g., means, variances, correlations, etc.), and we know the mathematical form of these distributions, we can find probabilities

outstanding question \#3

- question 3: how do we know whether the probability we obtained, i.e., P(data | null hypothesis) is small enough?
- we need to set thresholds in place BEFORE we look at our data (no peeking!)
- all researchers/scientists must follow the same framework when testing hypotheses
- enter: null hypothesis significance testing (NHST)

ALL sample correlations with sample size n when
there is no meaningful relationship between height and weight in the population

some changes

- problem sets now due Tuesday night
- PS4 is due March 11
- PS4 revision is due March 27
- quizzes will still be due Monday night
- pace will be slower
- more practice problems using Sheets (but, we have limited time)
- PLEASE watch the videos (when they are listed on the website!)
- rethinking office hour times (TBD)
- thanks for your feedback!

next time

- before class
- prep: textbook readings
- try: week 6 quiz
- apply: PS4 problems (chapters 6 and 7)
- apply: optional meme
- during class
- hypothesis testing

