

DATA ANALYSIS

Week 7: Sampling and hypothesis testing

logistics: midterm 1

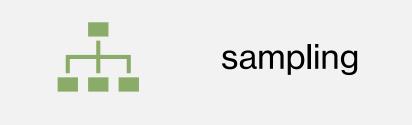
- exam grades will be made available latest by Thursday morning
- review my comments in rubric
- please come see me if you have questions!

mid-semester check-in

- everyone schedules a 15-minute meeting post spring break
 [calendly link]
- fill out **anonymous** mid semester survey [opens on Friday]

7	T: March 4, 2025	W7: Sampling and Hypothesis Testing
7	Th: March 6, 2025	W7 continued
7	F: March 7, 2025	PS3 revision due
7	F: March 7, 2025	Week 7 Quiz due
8	T: March 11, 2025	Spring Break!
8	Th: March 13, 2025	Spring Break!
9	T: March 18, 2025	Spring Break!
9	Th: March 20, 2025	Spring Break!
10	T: March 25, 2025	W10: Modeling Relationships
10	Th: March 27, 2025	W10 continued
10	Su: March 30, 2025	Week 10 Quiz due
11	M: March 31, 2025	PS4 due / Opt-out Deadline 2
11	T: April 1, 2025	W11: Special Cases
11	Th: April 3, 2025	W11 continued
12	M: April 7, 2025	PS5 + PS4 revision due
12	T: April 8, 2025	<u>W12: Loose Ends / Exam 2 review</u>
12	Th: April 10, 2025	Exam (Midterm) 2

today's agenda

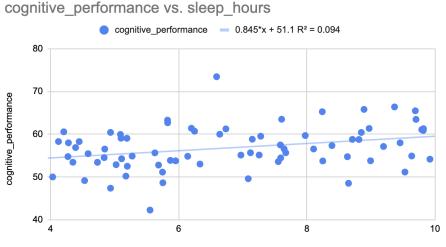


hypothesis testing

an experiment

- hypothesis: sleep predicts cognitive performance
- recorded number of hours of sleep via sleep tracker
- cognitive performance via phone game
- model formulation
 - cognitive performance ~ sleep + error
- sample correlation, *r* = .31

sleep_hours	cognitive_performance
6.24724071	60.7189024
9.70428584	63.4792748
8.39196365	57.3561342
7.59195091	54.4745639
4.93611184	47.3953454
4.93596712	60.434202
4.34850167	53.4598411
9.19705687	57.1451403
7.60669007	63.5052718
8.24843547	53.7573958
4.12350697	58.2974841



sleep_hours

from samples to populations

- we have a sample statistic (known: *r*)
- our population parameter (unknown ρ): it could be close or very far from r
- we can simulate what the population parameter would look like using our sample statistic
- basic idea:
 - samples are small subsets of the population
 - we mimic collecting MANY such samples of the same size and look at the distribution of <u>all</u> <u>possible sample statistics</u> we could obtain

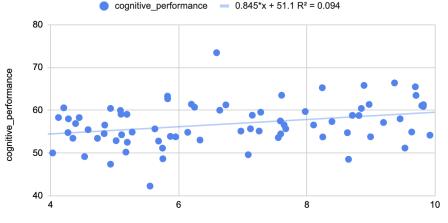


- Jupyter notebook with data

- confirm correlation, slope, and intercept

Actual sample slope: 0.84 Actual sample intercept: 51.08 Correlation between sleep_hours and cognitive_performance: 0.31

	sleep_hours	<pre>cognitive_performance</pre>
0	6.247241	60.718902
1	9.704286	63.479275
2	8.391964	57.356134
3	7.591951	54.474564
4	4.936112	47.395345



sleep_hours

- what if there was no true relationship between sleep and cognitive performance in the population?
- $\rho = 0$
- how can we mimic this "no relationship" using the sample we have?
- we could keep the sleep_hours column the same but shuffle the cognitive_performance column

original

	<pre>sleep_hours</pre>	<pre>cognitive_performance</pre>
0	6.247241	60.718902
1	9.704286	63.479275
2	8.391964	57.356134
3	7.591951	54.474564
4	4.936112	47.395345

shuffled

sleep_hours cognitive_performance

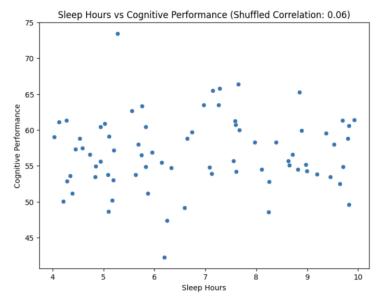
0	6.247241	47.395345
1	9.704286	54.845377
2	8.391964	58.297484
3	7.591951	60.718902
4	4.936112	60.422949

- what if there was no true relationship between sleep and cognitive performance in the population?
- $\rho = 0$
- how can we mimic this "no relationship" using the sample we have?
- we could keep the sleep_hours column the same but shuffle the cognitive_performance column

original

	<pre>sleep_hours</pre>	<pre>cognitive_performance</pre>
0	6.247241	60.718902
1	9.704286	63.479275
2	8.391964	57.356134
3	7.591951	54.474564
4	4.936112	47.395345

shuffled

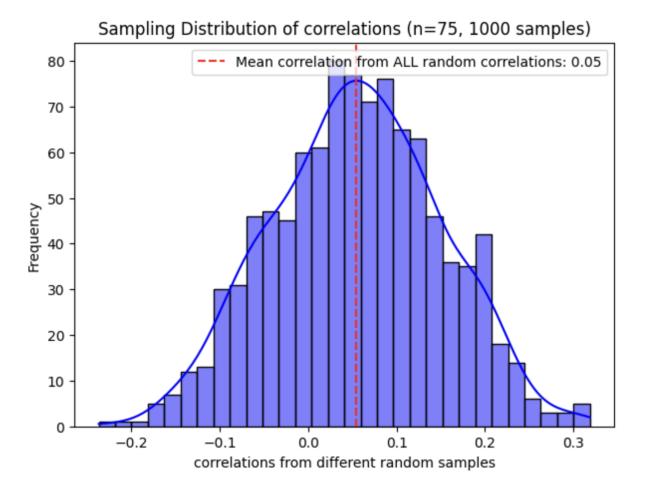


- in this shuffled dataset, what does a random sample look like?
- we repeat this 1000 times, i.e., we take 1000 random samples with replacement
 - random sample: each outcome has an equal chance of being selected
 - sampling with replacement = putting back each observation so that the probability of being selected remains constant on the second draw

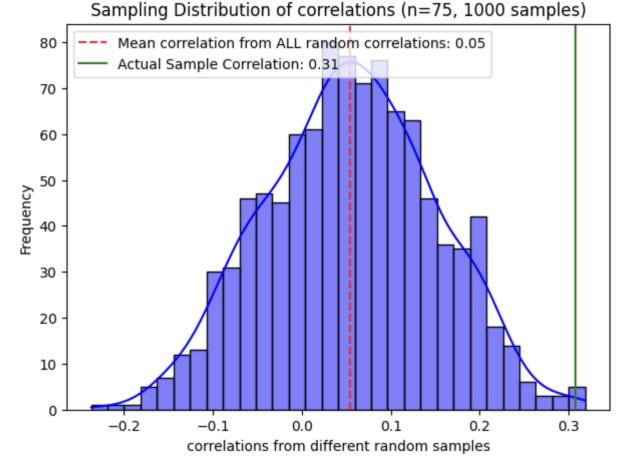
random sample slope: -0.05
random sample intercept: 56.53
random sample correlation: -0.02

random sample slope: 0.06
random sample intercept: 55.57
random sample correlation: 0.03

- what does the distribution of correlations look like for MANY such random samples?
- sampling distribution: distribution of all possible values of the <u>sample statistic</u> obtained from multiple samples of a given size

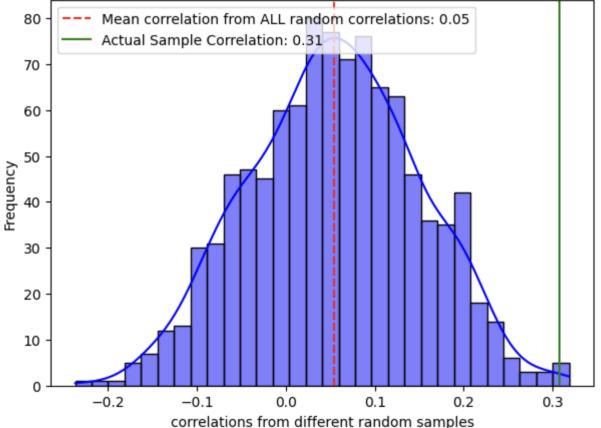


- what does the distribution of correlations look like for MANY such random samples?
- sampling distribution: distribution of all possible values of the sample statistic obtained from multiple samples of a given size
- now compare this sampling distribution of random slopes from the shuffled dataset to the <u>correlation in the actual sample</u>



Mean of ALL random correlations: 0.05 Standard deviation of ALL random correlations: 0.10

Sampling Distribution of correlations (n=75, 1000 samples)



- if there was no relationship between sleep and cognitive performance:

- there is an expected distribution of correlations
- what would be the average distance of a random correlation from the mean correlation?
- standard deviation of sampling distribution of correlations ≅ standard error of correlation

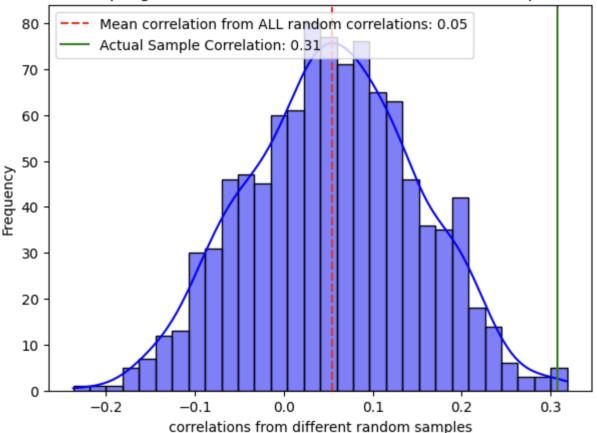
$$-SE_r = s_r = \sqrt{\frac{1-r^2}{n-2}}$$

Mean of ALL random correlations: 0.05 Standard deviation of ALL random correlations: 0.10

Sampling Distribution of correlations (n=75, 1000 samples)

if there was no relationship between sleep
 and cognitive performance: is obtaining a
 sample correlation of 0.31 typical?

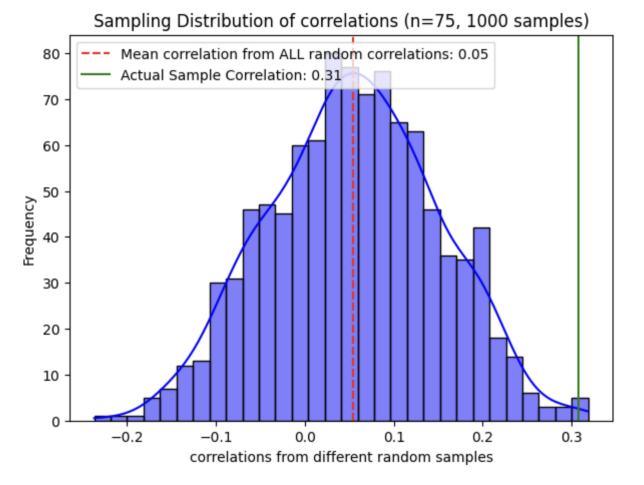
- ratio of observed difference vs. expected difference
- $\frac{observed\ difference}{expected\ difference} = \frac{r-\rho}{SE_r}$
- like a z-score!



Mean of ALL random correlations: 0.05 Standard deviation of ALL random correlations: 0.10

 $\frac{observed\ difference}{expected\ difference} = \frac{r-\rho}{SE_r}$

- what if we wanted an EXACT probability for our observed correlation?
- we would need to know the <u>exact form of</u> <u>the sampling distribution</u> of the sample statistic we are calculating



Student's t distribution

- $t = \frac{sample \ statistic \ \ population \ parameter}{standard \ error} = \frac{observed}{expected}$
- t distribution approximates the normal distribution
- how good is this approximation?
 - depends on the sample size (n)
 - each t-curve is defined by *degrees of freedom (df)* which depend on the sample size and statistic
 - for large dfs, the t distribution approximates the normal distribution

VOLUME VI MARCH, 1908

BIOMETRIKA.

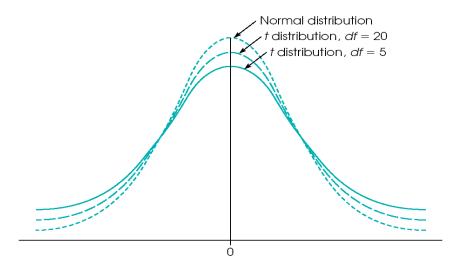
THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Introduction.

Any experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form a judgment as to the statistical constants of the population to which the experiments belong. In a great number of eases the question finally turns on the value of a mean, either directly, or as the mean difference between the two quantities. If the number of experiments be very large, we may have precise information

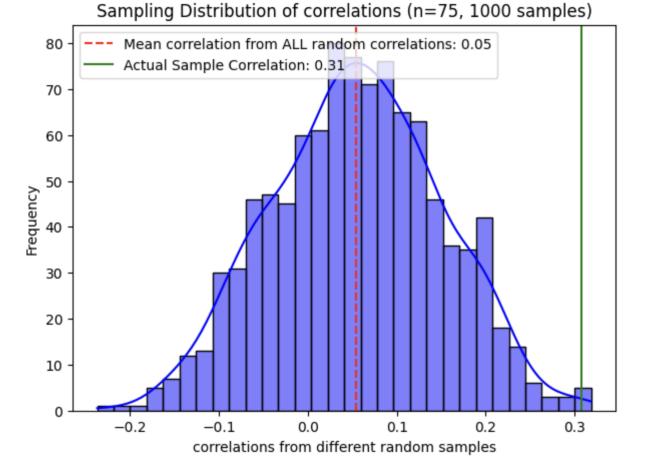


typical sampling distributions

sample statistic	sampling distribution
correlation / slopes	Student's t distribution
ratio of squared errors	F-distribution
means	normal (central limit theorem)

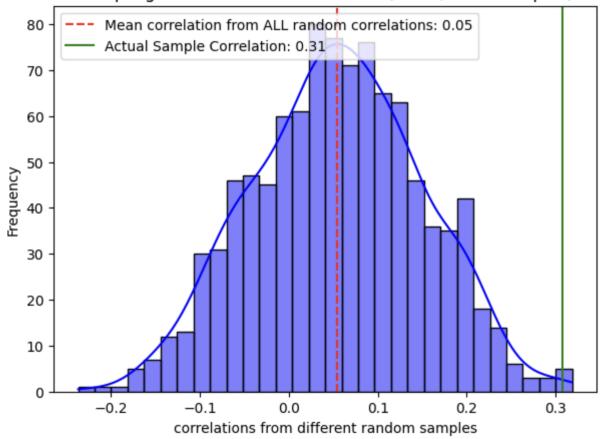
null hypothesis significance testing (NHST)

- start by assuming that our hypothesis is wrong
 - null hypothesis: there is no meaningful relationship between Y (performance) and X (sleep)
 - H_0 : population parameter $\rho = 0$
 - alternative hypothesis: there is a meaningful relationship between Y (performance) and X (sleep)
 - H_1 : population parameter $\rho \neq 0$
- we generate a sampling distribution under the null hypothesis using the sample statistic



p-value: P (data | null)

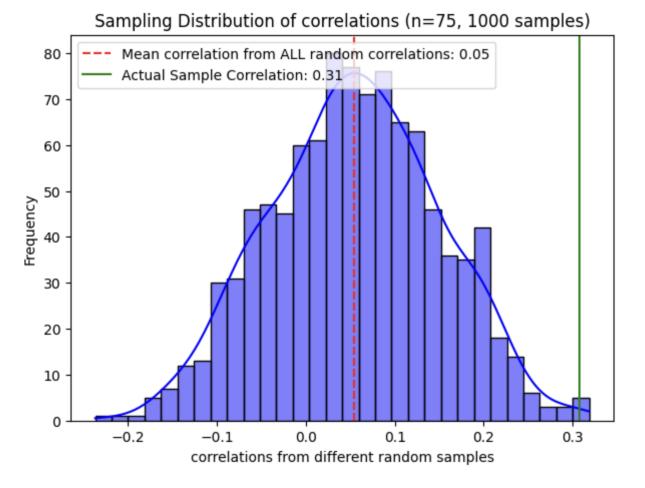
- once we have a sampling distribution under the null hypothesis, we want to know how likely is the sample statistic you obtained
- p-value = probability of observing a sample statistic as or more extreme as the one observed <u>if the null hypothesis was true</u>
- if this probability is really low, we can infer that the null hypothesis may not be true, and subsequently infer that your actual hypothesis may be true!



Sampling Distribution of correlations (n=75, 1000 samples)

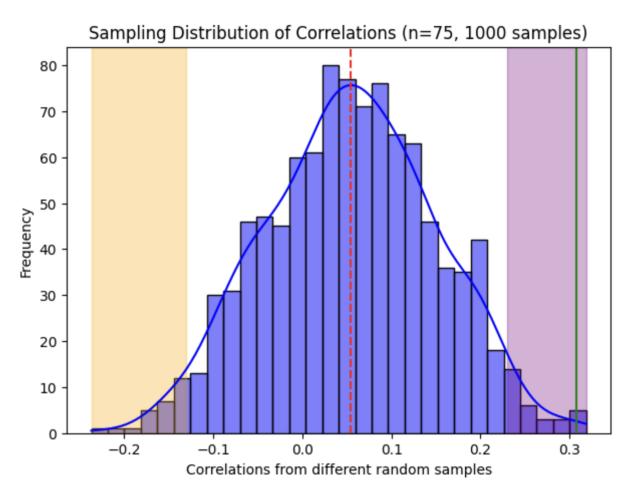
α -level and critical region

- α -level = significance-level criteria
 - typically set to 0.05, i.e., the extreme
 5% of the sampling distribution



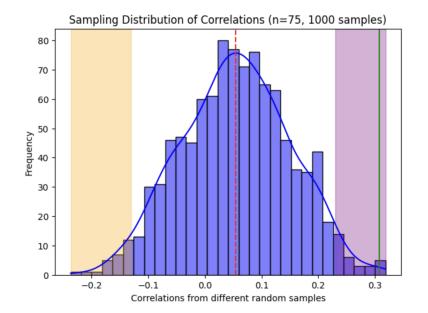
α -level and critical region

- α -level = significance-level criteria
 - typically set to 0.05, i.e., the extreme 5% of the sampling distribution
 - if the observed statistic is within this critical region, we will reject the null hypothesis in favor of the alternative hypothesis
 - commonly referred to as a statistically significant result
- we typically find a critical value based on the underlying sampling distribution (e.g., *t_{critical}*) using a <u>calculator</u>

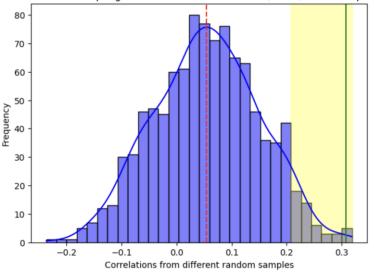


one vs. two-tailed tests

- two-tailed tests make no assumptions about directionality when discussing the hypotheses
 - $H_o: \rho = 0, H_1: \rho \neq 0$
 - $\alpha = 0.05$ splits the null distribution into two regions (corresponding to p < .025 and p > .025)
- one-tailed (directional) tests specify a direction in the hypotheses, i.e., an increase or decrease in the population parameter
 - $H_o: \rho \le 0, H_1: \rho > 0$
 - $\alpha = 0.05$ is restricted to only ONE part of the null distribution, leading to a larger area
 - more sensitive but also less conservative



One-Tailed Sampling Distribution of Correlations (n=75, 1000 samples)



W7 Activity 2 debrief

For a two-tailed hypothesis test evaluating a Pearson correlation, what is stated by the null hypothesis?

- there is a non-zero correlation for the sample
-) the sample correlation is zero
- there is a non-zero correlation for the general population
- the population correlation is zero

Which of the following accurately describes the critical region?

outcomes with a very low probability whether or not the null hypothesis is true
 outcomes with a high probability whether or not the null hypothesis is true
 outcomes with a high probability if the null hypothesis is true
 outcomes with a very low probability if the null hypothesis is true

W7 Activity 2 debrief

Which of the following accurately describes a hypothesis test?

- an inferential technique that uses the data from a sample to draw inferences about a population
 - a descriptive technique that allows researchers to describe a sample
- a descriptive technique that allows researchers to describe a population
- an inferential technique that uses information about a population to make predictions about a sample

W7 Activity 2 debrief

If a research report includes the term *significant result*, it means that the null hypothesis was accepted.

True

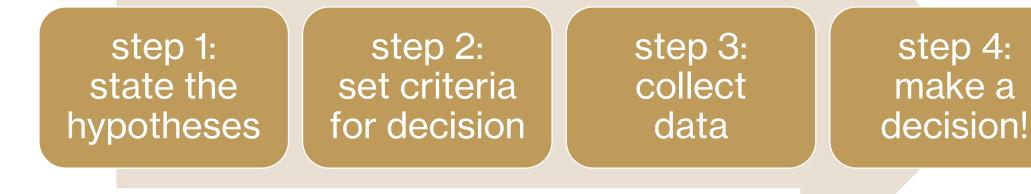
False

The null hypothesis is stated in terms of the population, even though the data come from a sample.

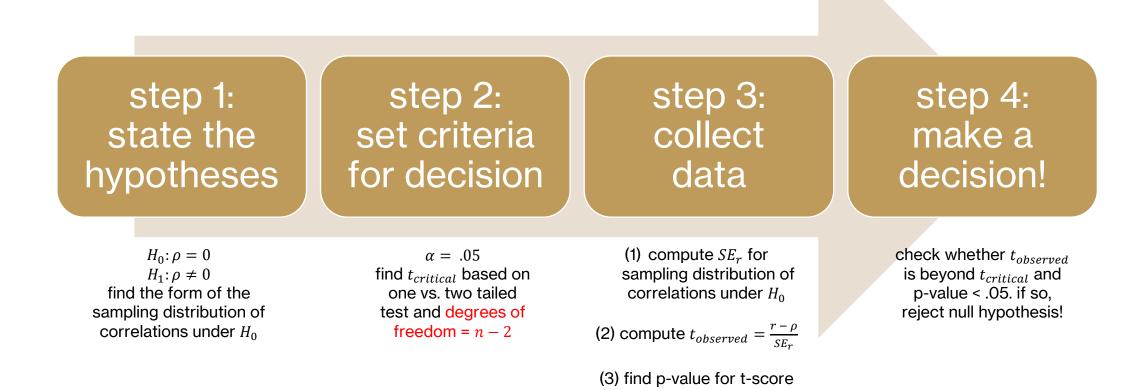
True

False

summary of NHST



NHST for correlations

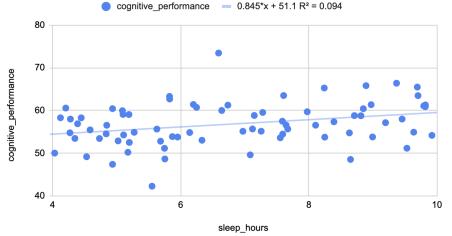


example: NHST for correlation

- hypothesis: sleep predicts cognitive performance

sleep_hours	cognitive_performance
6.24724071	60.7189024
9.70428584	63.4792748
8.39196365	57.3561342
7.59195091	54.4745639
4.93611184	47.3953454
4.93596712	60.434202
4.34850167	53.4598411
9.19705687	57.1451403
7.60669007	63.5052718
8.24843547	53.7573958
4.12350697	58.2974841

cognitive_performance vs. sleep_hours



example: NHST for correlation

- step 1: state the hypotheses

- $H_0: \rho = 0$
- $H_1: \rho \neq 0$
- step 2: set criteria for decision
 - $t_{n-2} = t_{73} = t_{critical} = 1.99 at \alpha = .05$
- step 3: collect data
 - compute sample correlation *r* = 0.31
 - compute the standard error for correlation

$$SE_r = s_r = \sqrt{\frac{1-r^2}{n-2}} = .11$$

- compute the t-statistic: $t_{observed} = \frac{r-0}{SE_r} = \frac{.31}{.11} = 2.76$
- compute p-value: $p_{observed} = .0073$
- step 4: decide & report!
 - sleep is significantly correlated with cognitive performance,
 r = .31, t(73) = 2.76, p = .007

t value z value chi-square value	f value	Results
r value		t value for Right Tailed Probability:
	Omenda la sub-	1.666
Significance Level a: (0 to 0.5)	Sample Inputs	t value for Left Tailed Probability:
0.05		- 1.666
Degrees of Freedom:		
73		t value for Two Tailed Probability:
		± 1.993
C <u>Reset</u>	Calculate	

P Value Results

t=2.76 DF=73

The two-tailed P value equals 0.0073

By conventional criteria, this difference is considered to be very statistically significant.

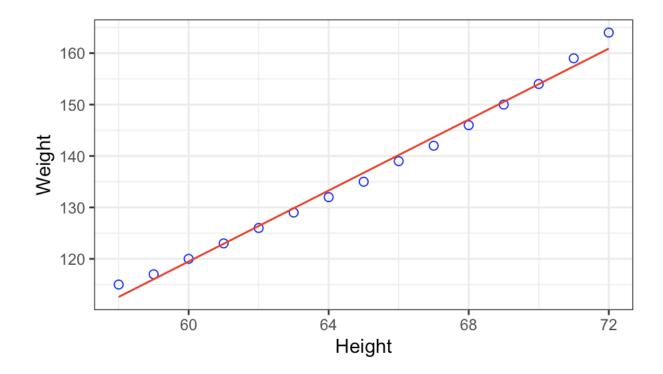
reporting statistical results

- verbal description, sample statistic = X.XX, test statistic (sample size) = X.XX, p value = .XXX
- statistics are always italicized
- p-values are reported up to third decimal
- everything else reported up to second decimal
- sleep is significantly correlated with cognitive performance,

r = .31, *t*(73) = 2.76, *p* = .007

activity: NHST for correlation

- women data
- compute correlation and perform a hypothesis test!
- critical value calculator
- p-value calculator



activity: NHST for correlation

- step 1: state the hypotheses

- $H_0: \rho = 0$
- $H_1: \rho \neq 0$
- step 2: set criteria for decision
 - $t_{n-2} = t_{13} = t_{critical} = 2.16 at \alpha = .05$
- step 3: collect data
 - compute the correlation r = 0.995
 - compute the standard error for correlation

$$SE_r = s_r = \sqrt{\frac{1-r^2}{n-2}} = .026$$

- compute the t-statistic: $t_{observed} = \frac{r-0}{SE_r} = \frac{.995}{.026} = 37.855$
- compute p-value: $p_{observed} < .0001$
- step 4: decide!
 - height significantly correlates with weight,
 r = .995, *t*(13) = 37.86, *p* < .001

value	z value	chi-square value	f value	r value	Results
					t value for Right Tailed Probability:
Signific	cance Leve	l a: (0 to 0.5)	2	Sample Inputs	1.7709
0.05					t value for Left Tailed Probability:
Degree	s of Freedo	m:			- 1.7709
13					t value for Two Tailed Probability:
C <u>Res</u>	et		Ca	alculate	± 2.1604

P from	i t
t	37.855
DF	13
	Compute P

P Value from Pearson (R) Calculator

This should be self-explanatory, but just in case it's not: your r score goes in the R Score box, the number of pairs in your sample goes in the *N* box (you must have at least 3 pairs), then you select your significance level and press the button.

If you need to derive a r score from raw data, you can find a Pearson (r) calculator here.

How to report Pearson's r (APA)

R Score: _____995 M: _____15 Significance Level: 0.01 0.05

0.05		
0.10		

The P-Value is < .00001. The result is significant at p < .05.

Calculate

next time

- more hypothesis testing

Before Thursday

• Watch: <u>Hypothesis Testing (Correlations)</u>.

After Thursday

- Fill out the <u>Mid-Semester Survey</u> for extra credit!
 Due after spring break
- See <u>Apply</u> section.

Here are the to-do's for this week:

- Submit <u>Week 7 Quiz</u>
- Submit Problem Set 3 Revision
- Start working on Problem Set 4
- Submit any lingering questions <u>here</u>!
- Have a wonderful spring break!!
- Extra credit opportunities:
 - Submit <u>Mid-Semester Survey</u>
 - Submit Exra Credit Questions
 - Submit Optional Meme Submission